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“Anyone who has worked with matroids has come away with the conviction
that matroids are one of the richest and most useful ideas of our day.”

-Gian Carlo Rota
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Lattice path matroids LPMs

What we want: consider matroids My, M>, M5 as given below:
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o How can we understand from a matroidal porint of view this relationship?
e The algebro-geometric importance of this relies on the fact that the sequence
My C M, C M5 corresponds to a point in the full flag variety F/s.
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iMuchas gracias!
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