Lattice paths, linear algebra and combinatorics Day 1

Carolina Benedetti Velásquez

with Jerónimo Valencia

Mathematics Sin Fronteras October 28th, 2021

spanning trees:

spanning trees: {236, 246, 256, 346, 356}.

spanning trees: {236, 246, 256, 346, 356}. cycles:

spanning trees: {236, 246, 256, 346, 356}. cycles: {234, 45, 1}. forests:

 bases:

bases: {236, 246, 256, 346, 356}.

bases: {236, 246, 256, 346, 356}. min. dependent:

 bases: $\{236, 246, 256, 346, 356\}$. min. dependent: $\{234, 45, 1\}$. independent:

 bases: {236, 246, 256, 346, 356}. min. dependent: $\{234, 45, 1\}.$ independent: { \emptyset , 2, 3, 4, 5, 6, 23, 24, 25, 26, 34, 35, 36, 46, ...}.

 bases: {236, 246, 256, 346, 356}. min. dependent: $\{234, 45, 1\}.$ independent: { \emptyset , 2, 3, 4, 5, 6, 23, 24, 25, 26, 34, 35, 36, 46, ...}.

A matroid M = (E, B) on the ground set E is such that B consists of subsets of E where:

$$\triangleright \ \mathcal{B} \neq \emptyset$$

▶ For all $A, B \in \mathcal{B}$, for all $a \in A - B$ there is $b \in B - A$ such that $A - a + b \in \mathcal{B}$.

A matroid M = (E, B) on the ground set E is such that B consists of subsets of E where:

Ejemplos:

grafos: G = (E, B) where E are the set of edges and B is the collection of trees.

k-ev: Let V be a k-dim. vector space in \mathbb{R}^n . Then $M_V = ([n], \mathcal{B})$ where $\mathcal{B} = \{J : |J| = k, p_J \neq 0\}.$

A matroid M = (E, B) on the ground set E is such that B consists of subsets of E where:

Ejemplos:

grafos: G = (E, B) where E are the set of edges and B is the collection of trees.

k-ev: Let V be a k-dim. vector space in
$$\mathbb{R}^n$$
. Then $M_V = ([n], \mathcal{B})$ where $\mathcal{B} = \{J : |J| = k, p_J \neq 0\}.$

For instance,

$$V = \langle (2, 0, 0, 1), (1, 1, 0, 2) \rangle$$

A matroid M = (E, B) on the ground set E is such that B consists of subsets of E where:

Ejemplos:

grafos: G = (E, B) where E are the set of edges and B is the collection of trees.

k-ev: Let V be a k-dim. vector space in
$$\mathbb{R}^n$$
. Then $M_V = ([n], \mathcal{B})$ where $\mathcal{B} = \{J : |J| = k, p_J \neq 0\}.$

For instance,

$$V = \langle (2,0,0,1), (1,1,0,2) \rangle \rightsquigarrow A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}.$$

More examples

A matroid M = (E, B) on the ground set E is such that B consists of subsets of E where:

$$\triangleright \mathcal{B} \neq \emptyset$$

For all $A, B \in \mathcal{B}$, for all $a \in A - B$ there is $b \in B - A$ such that $A - a + b \in \mathcal{B}$.

Ejemplos:

grafos: G = (E, B) where E are the set of edges and B is the collection of trees.

k-ev: Let V be a k-dim. vector space in \mathbb{R}^n . Then $M_V = ([n], \mathcal{B})$ where $\mathcal{B} = \{J : |J| = k, p_J \neq 0\}.$

More examples

A matroid M = (E, B) on the ground set E is such that B consists of subsets of E where:

$$\triangleright \mathcal{B} \neq \emptyset$$

For all $A, B \in \mathcal{B}$, for all $a \in A - B$ there is $b \in B - A$ such that $A - a + b \in \mathcal{B}$.

Ejemplos:

grafos: G = (E, B) where E are the set of edges and B is the collection of trees.

k-ev: Let V be a k-dim. vector space in \mathbb{R}^n . Then $M_V = ([n], \mathcal{B})$ where $\mathcal{B} = \{J : |J| = k, p_J \neq 0\}.$

others: transversal matroids, algebraic matroids, 0/1-generalized permutaedra...

More examples

A matroid M = (E, B) on the ground set E is such that B consists of subsets of E where:

$$\triangleright \ \mathcal{B} \neq \emptyset$$

For all $A, B \in \mathcal{B}$, for all $a \in A - B$ there is $b \in B - A$ such that $A - a + b \in \mathcal{B}$.

Ejemplos:

grafos: G = (E, B) where E are the set of edges and B is the collection of trees.

k-ev: Let V be a k-dim. vector space in \mathbb{R}^n . Then $M_V = ([n], \mathcal{B})$ where $\mathcal{B} = \{J : |J| = k, p_J \neq 0\}.$

others: transversal matroids, algebraic matroids, 0/1-generalized permutaedra...

"Anyone who has worked with matroids has come away with the conviction that matroids are one of the richest and most useful ideas of our day."

-Gian Carlo Rota

 \circ Matroids can be defined in at least 10 ways (different axiomatizations): bases, independent sets, circuits, polytopes, posets, ...

 \circ Matroids can be defined in at least 10 ways (different axiomatizations): bases, independent sets, circuits, polytopes, posets, ...

 \circ Matroids can be defined in at least 10 ways (different axiomatizations): bases, independent sets, circuits, polytopes, posets, ...

Alternative to bases

Let M = (E, B) be a matroid.

- $I \subseteq E$ is *independent* if $I \subset B$ for some basis B.
- $D \subseteq E$ is *dependent* if is not independent.
- $IC \subseteq E$ is a *circuit* if C is minimally dependent.
- The rank of M is r(M) = |B| for any basis B.

Alternative to bases

Let M = (E, B) be a matroid.

- $I \subseteq E$ is *independent* if $I \subset B$ for some basis B.
- $D \subseteq E$ is *dependent* if is not independent.
- $IC \subseteq E$ is a *circuit* if C is minimally dependent.
- The rank of M is r(M) = |B| for any basis B.

Fix $0 \le k \le n$ and let $U, L \in {[n] \choose k}$. The **lattice path matroid** M[U, L] is the matroid on [n] whose bases are those $B \in {[n] \choose k}$ such that $U \le B \le L$.

Fix $0 \le k \le n$ and let $U, L \in {[n] \choose k}$. The **lattice path matroid** M[U, L] is the matroid on [n] whose bases are those $B \in {[n] \choose k}$ such that $U \le B \le L$.

For instance, let k = 6, n = 13, $U = \{1, 2, 5, 9, 11, 12\}$, $L = \{4, 7, 8, 9, 12, 13\}$.

then $B = \{2, 4, 7, 9, 11, 13\}$ is a basis of M[U, L].

Fix $0 \le k \le n$ and let $U, L \in {[n] \choose k}$. The **lattice path matroid** M[U, L] is the matroid on [n] whose bases are those $B \in {[n] \choose k}$ such that $U \le B \le L$.

For instance, let k = 6, n = 13, $U = \{1, 2, 5, 9, 11, 12\}$, $L = \{4, 7, 8, 9, 12, 13\}$.

then $B = \{2, 4, 7, 9, 11, 13\}$ is a basis of M[U, L]. • LPMs are linear.

What we want: consider matroids M_1, M_2, M_3 as given below:

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ & & \\$$

What we want: consider matroids M_1, M_2, M_3 as given below:

• How can we understand from a matroidal porint of view this relationship? • The algebro-geometric importance of this relies on the fact that the sequence $M_1 \subset M_2 \subset M_3$ corresponds to a point in the *full flag variety* $\mathcal{F}\ell_3$.

Coming up next...

Coming up next...

Coming up next...

¡Muchas gracias!