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Google

I What do you envision when you think about Google?

I Google, the company we know today, started with a search engine, i.e., a
computer program that was designed to help us find specific webpages in
the World Wide Web.
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The Internet
I The Internet is a giant network of computers around the world connected

through “wires”.

I Think of the Internet as a giant graph consisting of vertices and edges:

vertices = servers/computers
edges = a wired connection between them

Brown University, Mathematics Sin Fronteras Random graphs, social networks and the internet Lecture 4 3/21



The World Wide Web

I The WWW is a “virtual” network connecting webpages through links.

I It defines a directed graph where:

vertices = webpages
edges = directed links from one webpage to another

I The WWW was officially born in 1991 with the creation of the first
browser, a software interface that allowed users to access many different
types of files stored in many different computers.
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The World Wide Web... cont.

I With the creation of the first free web browser, Mosaic, the WWW
quickly started growing.

I Many other web browsers quickly followed: Internet Explorer, Netscape
Navigator, Mozilla, Firefox, Safari, Google Chrome, etc.

I As the WWW grew, it became more and more important to be able to
search for information quickly and efficiently.
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Search Engines

I Search engines started being developed since the start of the WWW.

I Their goal was to find and organize the vast amount of information stored
on the Internet.

I In the early ages of the WWW, many search engines were competing for
our attention.
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What happened?

I Most of the early search engines were based on simple searches within
large databases:

keyword −→ list of webpages containing the keyword

I As the WWW grew larger, simple searches started returning too many
results... ordering them became important.

I Google was the first search engine to attempt a universal ranking of all
the webpages in the WWW which would determine in which order the
search results should be displayed.

I Page and Brin, the creators of Google, proposed an algorithm, called
PageRank, that would capture the relevance of each webpage into a
single score, which could then be used to order the search results.

Their idea worked!
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Recap on graphs

I A graph consists of a set of vertices and edges that connect them.

I Graphs can be directed or undirected, as we already saw.

I The structure of a graph matters quite a bit when we consider questions
like:
I Is there a path of edges connecting any pair of vertices?
I What is the length of the longest path connecting two vertices?
I What is the typical distance between vertices?
I What is the average number of (inbound/outbound) neighbors a vertex

has?

I Not all graphs have the same structure!

I Most of the interesting large graphs you can think of are rather special...
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Modeling complex networks

I Many real-world graphs are extraordinarily big, e.g., millions or billions of
vertices.

I Most of them are fairly sparse, i.e., the ratio

# edges

# vertices

is not too big.

I Many share two key properties:
I Small world: the typical distance between vertices is small compared to

the total number of vertices.
I Scale-free: the proportion of vertices with k (inbound/outbound)

neighbors decays as a power of k, e.g.,

# vertices with k neighbors

total # vertices
≈ Ck−α
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Other properties of complex networks

I Many interesting graphs are disconnected, but may have a large subset of
vertices that are connected.

I Some graphs have many “clusters” (groups of vertices that have more
connections among themselves than with the rest of the graph).

I Some directed graphs exhibit high levels of correlation between the
number of inbound neighbors and the number of outbound neighbors of a
given vertex.

I These properties influence how fast a message can spread through a
network and/or how many vertices it can reach.

I They also influence which vertices are more “central” to the
network.
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Relevance and centrality

I Back to the topic of search engines....

I Intuitively, a vertex in a graph is central if many paths go through it.

I The idea behind Google’s PageRank algorithm is that relevant webpages
should be those that are central to the network.

I Why? Links are created by people, and people will tend to create links to
webpages that have relevant/interesting content.

I How does PageRank find “central” vertices?
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The PageRank algorithm

I Let n denote the number of vertices in the WWW.

I The PageRank of webpage i, denoted ri, is a number in [0, 1] that
measures its “centrality” within the network.

I ri is a “universal” rank, i.e., it does not change from one search to
another, and it has nothing to do with the content of webpage i.

I ri depends only on the topology of the graph, i.e., on the structure
determined by the edges connecting the vertices.

I Relevance is contagious: If a relevant webpage has a link pointing to
another webpage, it makes it relevant too, but if it points to too many
webpages this effect is reduced.
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Computing the PageRank vector

I To compute the PageRank vector r = (r1, . . . , rn) we solve the system of
linear equations:

ri =
1− α
n

+ α
∑
j→i

rj

d+j
,

where the sum is taken over all the inbound neighbors to webpage i, d+j is
the number of outbound neighbors of webpage j, and α ∈ (0, 1) is a
constant known as the damping factor, usually α = 0.85.

I Why does this work?
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The random surfer interpretation

I Recall that the goal is to rank vertices according to their “centrality”
within the network.

I Imagine you had a web surfer who navigates the WWW by choosing
which links to follow at random.

I Specifically, when our surfer visits webpage i, she will choose where to go
next with equal probability among all the outbound links of webpage i.

I In the field of probability we call this process a random walk.
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Random walks on connected graphs

I Let {Xk : k ≥ 0} denote the stochastic process that tells us the identity
of the vertex our surfer visits on the kth step.

I {Xk : k ≥ 0} is what we call in probability a Markov chain.

I If the underlying graph is connected, and we let k →∞, the proportion of
visits to vertex i converges, i.e.,

lim
k→∞

Number of visits to vertex i in the first k steps

k
= πi

exists, and is known as the stationary probability of vertex i.

I The stationary probability of vertex i has the interpretation of being the
long-run proportion of time that our random surfer spends in vertex i.

I When the damping factor α = 0, we have ri = πi!
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Random walks on disconnected graphs

I The problem with the WWW is that it is a disconnected graph.

I On a disconnected graph our surfer can get “stuck”.

I To fix this imagine our surfer has a coin that lands heads with probability
α and tails with probability 1− α.

I At each step, before choosing which link to follow next, she flips the coin:
I If it lands heads she chooses with equal probability any of the outbound

links if there is one, or chooses from all n webpages if there are no
outbound links.

I If it lands tails she chooses with equal probability any of the n webpages in
the WWW.

I The stationary probability of vertex i is equal to its PageRank, i.e.,

πi = ri!
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Other network centrality measures

I Degree centrality: for vertex i,

CD(i) = Di =
∑
j 6=i

aij

On directed graphs we define the in-degree and out-degree separately.

I Closeness centrality: let d(i, j) denote the hop distance from vertex i to
vertex j, and define

CC(i) =
n− 1∑
j d(i, j)

where n is the number of vertices in the graph.

I Betweeness centrality: let gjk denote the number of paths connecting
vertices j and k, and let gjk(i) denote the number of those paths that go
through vertex i,

CB(i) =
∑
j

∑
k 6=j

gjk(i)

gjk
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PageRank today

I The algorithm that Google uses today has greatly evolved since the
original PageRank.

I Each website in the WWW still has a “universal” rank, although the way
it is computed has become more sophisticated.

I The order in which the results of a search are displayed depends also on
the user’s computer, i.e., results are personalized.

I Personalized PageRank:

ri = (1− α)qi + α
∑
j→i

rj

d+j
,

where q = (q1, . . . , qn) is a probability vector that determines where to go
after a tail.
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PageRank today... cont.

I People have found ways to “cheat” Google and achieve high ranks
artificially.

I Google keeps finding ways to identify cheaters.

I The PageRanks of all webpages in the WWW are constantly being
updated.

I Given the sheer size of the WWW today, Google’s evolved PageRank still
performs remarkably well most of the times.
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Thank you for your attention.
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