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The Albert-Barabási model

I All the random graph models we have seen so far are static.

I Static models do not explain how graphs grow.

I Evolving models propose a mechanism for choosing how a new vertex will
connect to the existing graph.

I Vertices are labeled in the order in which they arrive to the graph.

I One of the most famous evolving random graph models is the
Albert-Barabási graph or preferential attachment model.

I This model assumes that an incoming vertex will choose a vertex to
connect to with probability proportional to its degree.

I In other words, newcomers “prefer” to attach to high degree vertices.
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The Albert-Barabási model... cont.

I The model starts with one vertex that has a self-loop.

I At each time step, a new vertex arrives and connects by drawing one edge
either to itself, or to an existing vertex.

I Let Di(k) be the degree of vertex i after k vertices have arrived.

I When vertex k + 1 arrives it attaches to vertex i with probability:

pi(k) =

{
Di(k)
2k+1 , i = 1, . . . , k,
1

2k+1 , i = k + 1.

I This model produces scale-free graphs with degree distribution:

Pk(n) =
1

n

n∑
i=1

1(Di(n) = k) ≈ 4k−3

for large n.
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Preferential attachment models

I A generalization of the model allows each new vertex to attach using
m ≥ 1 edges, and attaches the jth edge of vertex k + 1 to vertex i with
probability:

pi(k) =
Di(k, j − 1) + δ∑k

v=1(Dv(k, j − 1) + δ)
, i = 1, . . . , k, k + 1,

where δ > −m and Di(t, j) is the degree of vertex i after t vertices have
arrived and j edges of vertex t+ 1 have been attached.

I This model generates scale-free graphs with degree distribution

Pk(n) =
1

n

n∑
i=1

1(Di(n,m) = k) ≈ Cm,δk−τ

for large n, where τ = 3 + δ/m.
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Preferential attachment models... cont.

I In preferential attachment models, the degrees of older vertices are very
different from those of younger ones.

I The “time-stamp” of a vertex, i.e., its time of arrival, gives us a lot of
information about its properties.

I Older vertices tend to have larger degrees.

I The largest degree grows as O(n−1/(2+δ/m)) as n→∞.
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An Albert-Barabási graph
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Stochastic simulation

I Suppose we want to run experiments using one of the random graph
models we have seen.

I For example, we can change the number of vertices and the parameters of
the model to explore its properties.

I We may want to use the graph to evaluate other phenomena on graphs.

I Question: How do we do it?

I Answer: We can use a computer to generate random numbers that we
can then use to create the graph.

I The technique of generating random numbers or processes using a
computer is the focus of stochastic simulation.
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Uniform random numbers

I Any programming language (e.g. Python, C, R, Matlab), and even Excel,
can generate random numbers.

I We will use U to denote a uniform random variable on the interval [0, 1].

I For any 0 ≤ a < b ≤ 1,

P (a < U < b) = b− a

I Informally, U is equally likely to take any value in [0, 1].

I Computers can generate long sequences of independent uniform random
numbers in [0, 1].

I Uniform random numbers can be used to generate any other kind of
random numbers.
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Virtual coin flips

I Suppose we want to simulate a coin flip with head probability p.

I We will generate a random number X such that

X =

{
1, with probability p,

0, with probability 1− p.

I We associate X = 1 with the event that the coin flip was a head, and
X = 0 with the event that the coin flip was a tail.

I Question: How can we use a uniform random number U to generate X?

0 1p

X = 0X = 1

0 1F

X = x

F F F1 2 3 4

X = x X = x X = x X = x2 3 4 51

X

X

0 11 − p

X = 0 X = 1

X
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Virtual coin flips... cont.

I This is equivalent to setting:

X = 1(U ≤ p),

where 1(A) = 1 if A happens and 1(A) = 0 if Ac happens.

I Note: We could also have taken

X = 1(U > 1− p)
0 1p

X = 0X = 1

0 1F

X = x

F F F1 2 3 4

X = x X = x X = x X = x2 3 4 51

X

X

0 11 − p

X = 0 X = 1

X
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Generating discrete random numbers

I Suppose we want to simulate a random variable X that can take the
values {x1, x2, . . . , xk}.

I Let {pi : 1 ≤ i ≤ k} be the probability mass function of X, i.e.,

pi = P (X = xi), 1 ≤ i ≤ k

I Now compute the distribution function of X by setting F0 = 0 and:

Fi = p1 + · · ·+ pi, 1 ≤ i ≤ k

I Question: How can we use a uniform random number U to generate X?
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Generating discrete random numbers... cont.

I Let U be a uniform random number in [0, 1].

0 1p

X = 0X = 1

0 1F

X = x

F F F1 2 3 4

X = x X = x X = x X = x2 3 4 51

X

X

0 11 − p

X = 0 X = 1

X

I This is equivalent to setting:

X =

k∑
i=1

xi1(Fi−1 ≤ U < Fi)
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Simulating a continuous distribution

I Suppose we want to generate a random variable X such that:
I X has a distribution function F (x) = P (X ≤ x)

I F (x) is continuous and strictly increasing when 0 < F (x) < 1
(it can be just nondecreasing for F (x) = 0 or F (x) = 1)

I F (x) has an inverse F−1(x).

I Algorithm:

1. Generate U ∼ Uniform[0,1]

2. Return X = F−1(U)

I This is called the inverse transform method.
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Example: Pareto random numbers

I Generating scale-free graphs using some of the models we saw requires
simulating Pareto random numbers.

I A Pareto distribution function takes the form:

F (x) = 1− (x/b)−α, x ≥ b

I The parameter α > 0 controls the shape of the distribution (how heavy
its tail is), and the parameter b > 0 controls its scale (and its support).

I We can compute its inverse as follows:

u = 1− (x/b)−α ⇐⇒ (x/b)−α = 1− u ⇐⇒ x = b(1− u)−1/α

I Hence, F−1(u) = b(1− u)−1/α, and X = F−1(U) has a Pareto(α, b)
distribution.
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Generating random graphs

I Generating coin flips, discrete random numbers, and continuous random
variables via the inverse transform method is all we need to simulate any
of the random graph models we have seen.

I The models we have seen are:
I Erdős-Rényi graph

I Chung-Lu model

I Stochastic block model

I Random intersection graph

I Albert-Barabási model

I We will give an algorithm in pseudocode to generate each of the models.

I In all cases, the goal is to obtain the adjacency matrix A for the
generated graph.
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Erdős-Rényi graph

I This algorithm generates an undirected Erdős-Rényi graph with n vertices
and edge probabilities p.

I Set p ∈ (0, 1) and n; initialize matrix A ∈ Rn × Rn.

I For i = 1 : n
I For j = 1 : n

I If i = j set
ai,j = 0

I If i 6= j generate a uniform [0, 1] random number Ui,j and set

ai,j = aj,i = 1(Ui,j ≤ p)

I Return adjacency matrix A.
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Chung-Lu model

I This algorithm generates a Chung-Lu model with n vertices and weight
distribution F (x) = 1− (x/b)−α.

I Set n and initialize matrix A ∈ Rn × Rn and weight vector W ∈ Rn.

I For i = 1 : n
I Generate a uniform [0, 1] random number Ui and set

Wi = b(1− Ui)
−1/α

I Compute Ln =
∑n
i=1Wi.

I For i = 1 : n
I For j = 1 : n

I If i = j set
ai,j = 0

I If i 6= j generate a uniform [0, 1] random number Ui,j and set

pi,j =
WiWj

Ln
∧ 1 and ai,j = aj,i = 1 (Ui,j ≤ pi,j)

I Return adjacency matrix A.
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Stochastic block model

I This algorithm generates a SBM model with n vertices, K communities of
sizes {π1,n, . . . , πK,n}, and kernel κ.

I Set n and initialize matrix A ∈ Rn × Rn.

I Assign to each vertex its community label, say in a vector (C1, . . . , Cn),
e.g., by giving the first π1,n vertices label 1, the next π2,n label 2, etc.

I For i = 1 : n
I For j = 1 : n

I If i = j set
ai,j = 0

I If i 6= j generate a uniform [0, 1] random number Ui,j and set

pi,j =
κ(Ci, Cj)

n
and ai,j = aj,i = 1 (Ui,j ≤ pi,j)

I Return adjacency matrix A.
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Random intersection graph

I This algorithm generates an intersection graph with tunable clustering
coefficient and weight distribution F (x) = 1− (x/b)−α.

I Fix β, γ > 0, set n, initialize matrix A ∈ Rn × Rn and weight vector
W ∈ Rn.

I Generating the bipartite graph:

I Set m = bβnc and initialize matrix B ∈ Rn × Rm.

I For i = 1 : n
I Generate a uniform [0, 1] random number U ′i and set

Wi = b(1− U ′i)
−1/α

I Set pi =
γWi
n
∧ 1.

I For j = 1 : m
I Generate a uniform [0, 1] random number Ui,j and set

bi,j = 1(Ui,j ≤ pi)

I Return adjacency matrix B for the bipartite graph.
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Random intersection graph... cont.

I Generating the intersection graph:
I For i = 1 : n

I For j = 1 : m
I Let Ni = Bi•, where Bi• is the ith row of matrix B (neighbors of i in the

bipartite graph).

I Let Nj = Bj• (neighbors of j in the bipartite graph).

I Let J = Ni −Nj .
I If min |J | = 0 and i 6= j, then set ai,j = 1; otherwise ai,j = 0.

I Return adjacency matrix A for the random ntersection graph.

I Note: Above, for any vector X = (x1, . . . , xm) we write
|X| = (|x1|, . . . , |xm|).
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Albert-Barabási model

I This algorithm generates an Albert-Barabási model with n vertices.

I Initialize degree vector D ∈ Rn and adjacency matrix A ∈ Rn × Rn.

I Set D(1) = 2 and a1,1 = 1.

I For k = 2 : n
I Set D(k) = 1 and construct distribution vector Fk as follows:
I Set Fk(1) = D(1), and for j = 2 : k

I Set Fk(j) = Fk(j − 1) +D(j)

I Normalize Fk by updating Fk → Fk/
∑k
j=1 Fk(j)

I Sample a uniform [0, 1] random number U and compute

J =
k∑
j=1

j1(Fk(j − 1) < U ≤ Fk(j))

I Update:
ak,J = aJ,k = 1, D(J) = D(J) + 1

I Return adjacency matrix A.
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Thank you for your attention.
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