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Random graph models

I Some real networks are too big to be analyzed exactly.

I Some may even be constantly changing.

I Idea: we can think of our specific real-world graph as just one “typical”
element of a larger class.

I If we can show that a property holds for a large class of graphs, it is likely
it will hold for our specific graph.

I Random graphs are mathematical models that can help us understand
large real-world graphs.

I No random graph model can mimic all the properties of a specific
real-world graph, so we focus on choosing models that share certain
properties that are important to the problem we want to analyze.
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Large graph limit

I Random graph models consist of a vertex set Vn = {1, 2, . . . , n} and a set
of rules for determining whether a given edge is present or not based on
some random events.

I Their mathematical analysis is usually done under the large graph limit
n→∞ on a sequence of graphs {G(Vn, En) : n ≥ 1}.

I Taking the limit n→∞ simplifies computations in order for us to identify
general properties.

I In practice, establishing results in the large graph limit means that our
findings are likely to be true for sufficiently large graphs.

Brown University, Mathematics Sin Fronteras Random graphs, social networks and the internet Lecture 2 3/23



Static vs. evolving models

I Random graph models can be broadly classified into two categories:
static models and evolving or growing models.

I Static models are meant to represent a “snapshot” of a large network.

I In static models G(Vn, En) and G(Vn+1, En+1) can be totally different.

I Evolving models are meant to describe the growth of a graph as vertices
get added to the graph (usually one at a time), so G(Vn, En) and
G(Vn+1, En+1) share most edges.

I In many evolving models edges and vertices never disappear, so
G(Vn, En) is a subgraph of G(Vn+1, En+1).
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The Erdős-Rényi random graph

I The simplest model for a random graph is the Erdős-Rényi model.

I Consider a graph with vertex set Vn = {1, 2, . . . , n}.
I There are a total of

(
n
2

)
possible edges in the graph, and each of them will

be chosen to be present or not with a coin flip.

I Suppose you have a coin that lands heads with probability p ∈ (0, 1).

I For each pair of vertices i and j, toss the coin; if it lands heads, draw an
edge between i and j, otherwise do nothing.

I Equivalently, if A denotes the adjacency matrix of the graph, let

ai,j = aj,i = 1(coin-flip is a head), i 6= j,

and set ai,i = 0.
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Properties of the Erdős-Rényi model

I This is the most studied random graph model there is.

I Some of its connectivity properties are:
I If np < 1 the graph will consists of only small components of size
O(logn).

I If np→ c > 1 the graph will contain a unique giant connected component,
with all other components of size O(logn).

I If np = 1 the largest component will have size O(n2/3).

I If p < (1− ε)n−1 logn the graph will most likely be disconnected.

I If p > (1 + ε)n−1 logn the graph will most likely be connected.

I When the graph is connected, it exhibits the small-world property, with
typical distance of order O(log n).
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Degree distribution

I To compute the degree distribution we can use binomial probabilities.

I Fix a vertex i ∈ Vn, then its degree is given by

Di =

n∑
j=1

χi,j , χi,j = 1((i, j) ∈ En)

I Note that the χi,j are independent Bernoulli r.v.s with parameter p.

I Therefore, since all vertices have the same distribution, for all i ∈ Vn,

P (Di = k) = P (D1 = k) = P (Binomial(n, p) = k) =

(
n

k

)
pk(1− p)n−k
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Degree distribution... cont.

I Moreover, if np→ c as n→∞, we can approximate the binomial as
follows:

(
n

k

)
pk(1− p)n−k =

n(n− 1) · · · (n− k + 1)

nk
· 1
k!
(np)k · (1− p)

n

(1− p)k

→ 1 · 1
k!
ck · lim

n→∞
en log(1−p), n→∞

I To compute the last limit, note that

lim
n→∞

n log(1− p) = lim
n→∞

(−np+O(np2)) = −c

I Therefore,

lim
n→∞

P (D1 = k) =
e−cck

k!
, k ≥ 0,

known as a Poisson distribution with mean c.... not scale-free.
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Poisson vs. scale-free

I A Poisson distribution is a light-tailed, i.e., its tail decreases
exponentially fast.

I Poisson random variables are all close to their mean.

I A scale-free distribution is heavy-tailed, i.e.,

∞∑
k=0

eεkP (D = k) =∞

for all ε > 0.

I Heavy-tailed random variables can take extremely large values.

I In particular, for any k ≥ 1,

lim
m→∞

P (D > k +m|D > m) = 1

which can be interpreted as:

“Given that D is large, most likely it is huge.”
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An Erdős-Rényi graph
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Inhomogeneous random graphs

I Erdős-Rényi graphs are quite homogeneous, i.e., all the vertices have
degrees close to their common mean.

I Real-world networks are often scale-free.

I We can create random graphs that have inhomogeneous degrees by
allowing the edge probabilities to vary from vertex to vertex.

I To each vertex i ∈ Vn assign a value wi ≥ 0, and define the edge
probability

p
(n)
i,j := P ((i, j) ∈ En) =

wiwj
ln
∧ 1, i 6= j,

where ln = w1 + · · ·+ wn.

I The adjacency matrix of the graph is given by:

ai,j =

{
1, with probability p

(n)
i,j ,

0 with probability 1− p(n)i,j .
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Inhomogeneous random graphs... cont.

I Each edge is determined independently of other edges.

I This choice of edge probabilities corresponds to the Chung-Lu model.

I The expected degree of vertex i ∈ Vn is:

E[Di] =

n∑
j=1

p
(n)
i,j ≈ wi

I If we let

F (x) = lim
n→∞

1

n

n∑
i=1

1(wi ≤ x),

then the degree distribution “looks” like F .

I If we set wi = p for all i ∈ Vn we get an Erdős-Rényi model.

I Scale-free graphs can be obtained by choosing F to be a power-law
distribution.
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An inhomogeneous random graph
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Graphs with communities

I Inhomogeneous random graphs can be scale-free and will have the
small-world property.

I However, they do not have community structure.

I Suppose we want to generate a graph with K communities.

I To each vertex i ∈ Vn assign a community label ci ∈ {1, 2, . . .K}.
I Now sample edges independently using edge probabilities of the form:

p
(n)
i,j = P ((i, j) ∈ En) =

κ(ci, cj)

n
, i 6= j,

where κ : {1, . . . ,K} × {1, . . . ,K} → [0,∞).

I The size of community k ∈ {1, . . . ,K} is nπn,k =
n∑
i=1

1(ci = k).
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Graphs with communities... cont.

I This construction is known as a stochastic block model.

I In order to create communities we choose κ(ci, cj) be “large” for i = j,
and “small” for i 6= j.

I The expected degree of a vertex in community m ∈ {1, . . . ,K} is:

E[Di|ci = m] =

n∑
j=1

κ(m, cj)

n
=

K∑
r=1

κ(m, r)πn,r

I Stochastic block models are homogeneous within each community, but
can have different expected degree from one community to another.
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A stochastic block model
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Graphs with clustering

I The global clustering coefficient of a graph is

number of triangles

number of open wedges

I Inhomogeneous random graphs do not have significant clustering.

I In fact, inhomogeneous random graphs are locally tree-like.

I They have “long” cycles of length O(log n).

I The clustering coefficient in the models we have seen converges to zero as
n→∞.

I Real-world graphs often have positive clustering coefficients, especially
social networks.
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Graphs with clustering... cont.

I To construct a graph with non-negligible clustering, we start by
generating a bipartite graph with vertex sets Vn = {1, . . . , n} and
Am = {a1, . . . , am}, n,m ≥ 1.

I To each vertex i ∈ Vn assign a value wi ≥ 0 and define

pi =
γwi
n
∧ 1,

where γ > 0 is a fixed parameter.

I Next, for each i ∈ Vn toss a coin that lands heads with probability pi with
each of the vertices in Am, and draw an edge if it is a head.

I Let N(i) ⊆ Am be the set of neighbors of i.

I We will now construct a new graph G(Vn, En), with adjacency matrix A
by setting:

ai,j = 1(N(i) ∩N(j) 6= ∅)
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Graphs with clustering... cont.

I This model is called a random intersection graph.

I Let F (x) = limn→∞ n−1
∑n
i=1 1(wi ≤ x) be the weight distribution, and

assume it has finite mean.

I If we choose m = bβnc, the degree of vertex i ∈ Vn in G(Vn, En) will
have (approximately) the distribution of

Poisson(βγwi) + Poisson(γ),

with the two Poisson r.v.s independent of each other.

I As with inhomogeneous random graphs, we can obtain the scale-free
property by choosing F to be a power-law distribution.

I The parameters β, γ can be used to tune the clustering coefficient to
cover the entire range (0, 1), with small values of βγ producing higher
clustering.
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An intersection graph
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The Albert-Barabási model

I All the random graph models we have seen so far are static.

I Static models do not explain how graphs grow.

I Evolving models propose a mechanism for choosing how a new vertex will
connect to the existing graph.

I Vertices are labeled in the order in which they arrive to the graph.

I One of the most famous evolving random graph models is the
Albert-Barabási graph or preferential attachment model.

I This model assumes that an incoming vertex will choose a vertex to
connect to with probability proportional to its degree.

I In other words, newcomers “prefer” to attach to high degree vertices.
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The Albert-Barabási model... cont.

I The model starts with one vertex that has a self-loop.

I At each time step, a new vertex arrives and connects by drawing one edge
either to itself, or to an existing vertex.

I Let Di(k) be the degree of vertex i after k vertices have arrived.

I When vertex k + 1 arrives it attaches to vertex i with probability:

pi(k) =

{
Di(k)
2k+1 , i = 1, . . . , k,
1

2k+1 , i = k + 1.

I This model produces scale-free graphs with degree distribution:

Pk(n) =
1

n

n∑
i=1

1(Di(n) = k) ≈ 4k−3

for large n.
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Thank you for your attention.
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