Random graphs, social networks and the internet Lecture 1

Mariana Olvera-Cravioto

UNC Chapel Hill molvera@unc.edu

September 23rd, 2020

Social networks and graphs

- The internet, the web, Facebook, Twitter, LinkedIn, Instagram, WhatsApp, WeChat, Snapchat, Pinterest, Reddit, etc. are all examples of networks.
- In social networks, connections occur among people.
- A connection between two people can mean many different things depending on the network, e.g., friendship, hyperlinks, follower-followed relations, etc.
- There are also many networks that do not involve people at all, e.g., the internet, neural connections in the brain, interactions between proteins in biology, articles in a citation network, etc.
- When analyzing networks, it is often convenient to think of them as graphs.

Graphs

- ► A graph consists on a set of vertices, V, and a set of edges E.
- Graphs can be undirected or directed.
- In an undirected graph, the relation between the vertices is symmetric, while in a directed graph it is not.
- We will call the vertices V = {1, 2, ..., n}, and write i → j to mean there is an edge (perhaps undirected) from vertex i to vertex j.
- In an undirected graph, the degree of a vertex is the number of edges incident to it.
- In a directed graph, the in-degree is the number of inbound edges and the out-degree is the number of outbound edges.

Examples of graphs

- Internet: vertices are servers/computers and edges are connections between them.
- Web: vertices are webpages and edges are directed links from one page to another.
- **Facebook:** vertices are people and edges are friendship relations.
- **Twitter:** vertices are people and edges go from followers to followed.
- Citation network: vertices are research articles and a directed edge represents a citation.

Simple graphs: a graph that has no self-loops nor multiple edges between any two vertices.

Multigraphs: a graph that may have self-loops or multiple edges between two vertices.

Connected graphs: graphs where every pair of vertices is connected through a path.

Strongly connected graphs: for directed graphs and any pair of vertices i and j, there exists a directed path from i to j and one from j to i.

Regular graphs: all the vertices in the graph have the same degree.

Complete graphs: there is an edge between every pair of vertices in the graph.

▶ **Bipartite graphs:** there are two classes of vertices, say V₁ and V₂, and edges occur only between a vertex in V₁ and one in V₂.

Structures and properties

- Some structures that can be of interest when studying graphs are:
 - Cycles: paths that start and end with the same vertex without repeated vertices.
 - Cliques: complete subgraphs.
 - Distance between two vertices: length of the minimum path connecting two vertices; in directed graphs the path must be directed.
 - Component of a vertex: the set of vertices that can be reached through (directed) paths from a given vertex.
- Some properties of interest:
 - **Diameter:** the maximum distance between two points in the graph.
 - **Components:** sizes of the largest, second largest, etc.
 - **Cycle lengths:** the typical length of cycles in the graph.
 - **Clustering:** the proportion of triangles (3-cliques) vs. open wedges.
 - Communities: subsets of vertices that have more edges among their vertices than with vertices outside the set.

Some questions of interest

Is the graph (strongly) connected?

- If not, does there exist a giant (strongly) connected component?
- What is the size of the smaller components?
- What is the diameter of the graph?
- What is the typical distance between vertices in the graph?
- What is the degree distribution in the graph?
- Does the graph have clusters/communities?
- Are there vertices that are more "influential" or "central" to the network?

The small world phenomenon

- In the late 60's, a social psychologist named Stanley Milgram conducted a set of experiments to try to determine the typical length of paths connecting two individuals in the United States.
- A letter addressed to somebody in Boston would be given to a set of randomly chosen people in different states in the Midwest, strangers to the recipient, with the instruction to help it reach its destination by sending it to an acquaintance.
- Result: it took an average of 6 people to connect the first sender and the final recipient, something that became known as the

small world or six degrees of separation

phenomenon.

Interestingly, the small world property is very common in large real-world networks.

Scale-free networks

- ▶ Recall that the degree of a vertex i ∈ V = {1, 2, ..., n} in an undirected graph, denoted D_i, is the number of edges incident to it.
- The proportion of vertices having degree k = 0, 1, 2, ..., is given by

$$p(k) = \frac{1}{n} \sum_{i=1}^{n} 1(D_i = k)$$

- We call $\{p(k) : k \ge 0\}$ the degree distribution.
- If the degree distribution of a graph satisfies

 $p(k) \propto k^{-\gamma}$

for some $\gamma > 0$ (usually $\gamma \in (2,3)$), we say that the graph is scale-free.

In a scale-free graph there are vertices that have really large degrees, even if the average degree is small.

The adjacency matrix

- A convenient way to represent a graph is through its adjacency matrix.
- ► For a graph G(V, E) having vertices V = {1, 2, ..., n}, its adjacency matrix A is the n × n matrix which has:

 $a_{i,j} =$ number of edges from vertex *i* to vertex *j*

- ▶ In a simple graph we have $a_{i,j} \in \{0,1\}$ for all (i,j).
- ▶ In a **undirected** graph the matrix A is symmetric.
- Example:

Counting paths

- Suppose A is the adjacency matrix of a graph G(V, E).
- Then, for any $k \ge 1$ and any $i, j \in V$,

 $(A^k)_{i,j}$

is the **number of paths of length** k from vertex i to vertex j, where A^k is the matrix A raised to the kth power.

Random graph models

- Some real networks are too big to be analyzed exactly.
- Some may even be constantly changing.
- Idea: we can think of our specific real-world graph as just one "typical" element of a larger class.
- If we can show that a property holds for a large class of graphs, it is likely it will hold for our specific graph.
- Random graphs are mathematical models that can help us understand large real-world graphs.
- No random graph model can mimic all the properties of a specific real-world graph, so we focus on choosing models that share certain properties that are important to the problem we want to analyze.

Large graph limit

- Random graph models consist of a vertex set V_n = {1, 2, ..., n} and a set of rules for determining whether a given edge is present or not based on some random events.
- Their mathematical analysis is usually done under the large graph limit n→∞ on a sequence of graphs {G(V_n, E_n) : n ≥ 1}.
- ► Taking the limit n → ∞ simplifies computations in order for us to identify general properties.
- In practice, establishing results in the large graph limit means that our findings are likely to be true for sufficiently large graphs.

Static vs. evolving models

- Random graph models can be broadly classified into two categories: static models and evolving or growing models.
- Static models are meant to represent a "snapshot" of a large network.
- ▶ In static models $G(V_n, E_n)$ and $G(V_{n+1}, E_{n+1})$ can be totally different.
- ▶ Evolving models are meant to describe the growth of a graph as vertices get added to the graph (usually one at a time), so *G*(*V*_n, *E*_n) and *G*(*V*_{n+1}, *E*_{n+1}) share most edges.
- ► In many evolving models edges and vertices never disappear, so G(V_n, E_n) is a subgraph of G(V_{n+1}, E_{n+1}).

The Erdős-Rényi random graph

- The simplest model for a random graph is the Erdős-Rényi model.
- Consider a graph with vertex set $V_n = \{1, 2, \dots, n\}$.
- There are a total of ⁿ₂ possible edges in the graph, and each of them will be chosen to be present or not with a coin flip.
- Suppose you have a coin that lands heads with probability $p \in (0, 1)$.
- For each pair of vertices i and j, toss the coin; if it lands heads, draw an edge between i and j, otherwise do nothing.
- Equivalently, if A denotes the adjacency matrix of the graph, let

$$a_{i,j} = a_{j,i} = 1$$
(coin-flip is a head), $i \neq j$,

and set $a_{i,i} = 0$.

Properties of the Erdős-Rényi model

- This is the most studied random graph model there is.
- Some of its connectivity properties are:
 - ► If np < 1 the graph will consists of only small components of size O(log n).
 - If np → c > 1 the graph will contain a unique giant connected component, with all other components of size O(log n).
 - If np = 1 the largest component will have size $O(n^{2/3})$.
 - If $p < (1 \epsilon)n^{-1} \log n$ the graph will most likely be disconnected.
 - If $p > (1 + \epsilon)n^{-1} \log n$ the graph will most likely be connected.
- ▶ When the graph is connected, it exhibits the small-world property, with typical distance of order *O*(log *n*).

Degree distribution

- To compute the degree distribution we can use binomial probabilities.
- Fix a vertex $i \in V_n$, then its degree is given by

$$D_i = \sum_{j=1}^n \chi_{i,j}, \qquad \chi_{i,j} = 1((i,j) \in E_n)$$

Note that the *χ_{i,j}* are independent Bernoulli r.v.s with parameter *p*.
Therefore, since all vertices have the same distribution, for all *i* ∈ *V_n*,

$$P(D_i = k) = P(D_1 = k) = P(\mathsf{Binomial}(n, p) = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

• Moreover, if $np \rightarrow c$ as $n \rightarrow \infty$, we have that

$$\lim_{n \to \infty} P(D_1 = k) = \frac{e^{-c}c^k}{k!}, \qquad k \ge 0$$

known as a Poisson distribution with mean c.... not scale-free.

Thank you for your attention.