## $\operatorname{MSF}$ - TAREA 1

## CAROLINA BENEDETTI VELÁSQUEZ AND JERÓNIMO VALENCIA

1. (graphical matroids)

Let M be the graphical matroid arising from the graph depicted below.



- (a) Provide an example of two bases of M and verify the exchange axiom for the chosen bases.
- (b) Give examples of independent, dependent, circuits, elements of M.
- (c) Prove that M is indeed a matroid (i.e. the basis exchange axiom is satisfied).
- (d) Classify all the graphical matroids on the ground set [3].
- 2. (LPMs)
  - (a) Give an example of an LPM on [12] of rank 6.
  - (b) Choose two bases of the matroid M provided in (a). Verify the exchange axiom.
  - (c) Prove that the exchange axiom works for LPMs.
- 3. (Independent set axioms) A matroid  $M = (E, \mathcal{I})$  is such that the collection  $\mathcal{I}$  satisfies: (I0)  $\emptyset \in \mathcal{I}$ 
  - (I1) If  $I \in \mathcal{I}$  and  $K \subseteq I$  then  $K \in \mathcal{I}$ .
  - (12) If  $I, J \in \mathcal{I}$  are such that |I| < |J| then there is  $j \in J I$  such that  $I \cup \{j\} \in \mathcal{I}$ .

1

- (a) Verify that the linear matroid  $M_V$  seen in class satisfies these axioms.
- (b) Prove that any linear matroid satisfies these axioms.