Re-Imaging the World through Linear Algebra

Malena I. Espanol

Assistant Professor of Computational Mathematics

Victoria Uribe

PhD Student of Applied Mathematics
School of Mathematical and Statistical Sciences
Arizona State University
malena.espanol@asu.edu
Mathematics Sin Fronteras
March10, 17, 24, 2021

The Plan

Singular Value Decomposition (SVD)

Theorem: Suppose $A \in \mathbb{R}^{n \times n}$. Then, there exist matrices $U \in \mathbb{R}^{n \times n}, V \in$ $\mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{n \times n}$, with $U^{T} U=V^{T} V=I_{n}$, and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\mathrm{n}}\right)$, $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$, such that $A=U \Sigma V^{T}$. The columns of U are called the left singular vectors, the columns of V the right singular vectors, and σ_{i} are called the singular values.

$$
\begin{aligned}
A=U \Sigma V^{T} & =\left(\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{n} \\
\mid & & \mid
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \sigma_{n}
\end{array}\right)\left(\begin{array}{ccc}
- & v_{1}^{T} & - \\
& \vdots & \\
- & v_{n}^{T} & -
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{n} \\
\mid & & \mid
\end{array}\right)\left(\begin{array}{ccc}
- & \sigma_{1} v_{1}^{T} & - \\
& \vdots & \\
- & \sigma_{n} v_{n}^{T} & -
\end{array}\right)=\Sigma_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T}
\end{aligned}
$$

SVD and TSVD of an Image

$$
A=U \Sigma V^{T}=\Sigma_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T}=\sigma_{1} u_{1} v_{1}^{T}+\sigma_{2} u_{2} v_{2}^{T}+\sigma_{3} u_{3} v_{3}^{T}+\cdots+\sigma_{n} u_{n} v_{n}^{T}
$$

$$
A_{k}=U_{k} \Sigma_{k} V_{k}^{T}=\Sigma_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}
$$

What is the cost of storing these matrices?
What is the cost of computing the matrix A_{k} ?

Image Compression using SVD
 $\mathrm{k}=1$
 $\mathrm{k}=50$

$\mathrm{k}=5$

$\mathrm{k}=10$

$\mathrm{k}=100$

$\mathrm{k}=256$

Matrix Norms and Distances

Definition: The Frobenius norm of a matrix A is defined by

$$
\|A\|_{F}=\sqrt{a_{11}^{2}+a_{12}^{2}+\cdots+a_{m n}^{2}}
$$

Examples: $\left\|\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\right\|_{F}=\sqrt{30} \mathrm{y}\left\|\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\|_{F}=\sqrt{2}$
Definition: The Frobenius distance between two matrices A and B is defined by

$$
d(A, B)=\|A-B\|_{F}=\sqrt{\left(a_{11}-b_{11}\right)^{2}+\left(a_{12}-b_{12}\right)^{2}+\cdots+\left(a_{m n}-b_{m n}\right)^{2}}
$$

Example: $d\left(\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)=\left\|\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)-\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\|_{F}=\left\|\left(\begin{array}{ll}0 & 2 \\ 3 & 3\end{array}\right)\right\|_{F}=\sqrt{22}$

Image Compression: Relative Error

Relative Error:

$$
\frac{\left\|A-A_{k}\right\|_{F}}{\|A\|_{F}}
$$

Image Compression: Compression Ratio

Compression Ration:

$$
\frac{m n}{k(m+n+1)}
$$

Coordinate Systems

$1(1,0)+1(0,1)=(1,1)$

"Coordinate Systems" of Matrices

$$
\begin{aligned}
& \left(\begin{array}{ll}
5 & 5 \\
3 & 5
\end{array}\right)=5\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+5\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+3\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+5\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
5 & 5 \\
3 & 5
\end{array}\right)=3\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)+0\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)+2\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

"Coordinate System" for Images

Ingrid Daubechies

She developed very special "coordinate systems" that are called Daubechies Wavelets. They are used to compressed images, videos, and music.

Image Deblurring

True image

Blurred and noisy image

Image deblurring problem: Try to reconstruct the true image from a blurred and noisy one.

System of Equations

If a, c, d, e, b_{1} and b_{2} are known we have a system of equations

$$
\begin{aligned}
& a x_{1}+c x_{2}=b_{1} \\
& d x_{1}+e x_{2}=b_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& 3 x_{1}+6 x_{2}=12 \\
& 5 x_{1}+10 x_{2}=24
\end{aligned}
$$

III-Conditioned System of Equations

Compare

$$
\begin{array}{|cr|}
\hline x_{1}+ & x_{2}=1 \\
2 x_{1}+2.0001 x_{2}=2 \\
\hline
\end{array}
$$

Exact solution: $x_{1}=1, x_{2}=0$,
with a slightly different system

Exact solution (rounded) : $x_{1}=900, x_{2}=-899$.

Regularization Methods

Original system

$x_{1}+$	$x_{2}=.99$
$2 x_{1}+2.0001 x_{2}=1.89$	

Exact solution (rounded) : $x_{1}=900, x_{2}=-899$,

$$
\text { Desired solution : } x_{1}=1, x_{2}=0
$$

Regularized system

$(1+0.05) x_{1}+$	$x_{2}=.99$
$2 x_{1}+(2.0001+0.05)$	$x_{2}=1.89$

Exact solution (rounded) : $x_{1}=.91, x_{2}=.03$.
... the solution of the regularized system is closer to the desired solution!

Systems of Equations in Matrix Form

We can write the system

$$
\begin{gathered}
x_{1}+\quad x_{2}=.99 \\
2 x_{1}+2.0001 x_{2}=1.89
\end{gathered}
$$

as

$$
\underbrace{\left[\begin{array}{cc}
1 & 1 \\
2 & 2.0001
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{c}
.99 \\
1.89
\end{array}\right]}_{b}
$$

Image Deblurring: Math Model

Image deblurring problem: Try to reconstruct the true image from a blurred and noisy one.

The Naïve Solution

Image deblurring is an ill-posed inverse problem: small perturbations in the data may result in large errors in the solution.

Regularized Solution

How Important is λ ?

Choosing λ is very important!
A whole area of research exists just to develop ways to find optimal values of λ.

The Plan

