<u>Re-Imaging the World</u> <u>through Linear Algebra</u>

Malena I. Espanol Assistant Professor of Computational Mathematics

Victoria Uribe PhD Student of Applied Mathematics

School of Mathematical and Statistical Sciences Arizona State University malena.espanol@asu.edu

Mathematics Sin Fronteras March10, 17, 24, 2021

The Plan

Singular Value Decomposition (SVD)

Theorem: Suppose $A \in \mathbb{R}^{n \times n}$. Then, there exist matrices $U \in \mathbb{R}^{n \times n}$, $V \in \mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{n \times n}$, with $U^T U = V^T V = I_n$, and $\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_n)$, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$, such that $A = U\Sigma V^T$. The columns of U are called the left singular vectors, the columns of V the right singular vectors, and σ_i are called the singular values.

$$A = U\Sigma V^{T} = \begin{pmatrix} | & & | \\ u_{1} & \cdots & u_{n} \\ | & & | \end{pmatrix} \begin{pmatrix} \sigma_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_{n} \end{pmatrix} \begin{pmatrix} - & v_{1}^{T} & - \\ & \vdots \\ - & v_{n}^{T} & - \end{pmatrix}$$
$$= \begin{pmatrix} | & & | \\ u_{1} & \cdots & u_{n} \\ | & & | \end{pmatrix} \begin{pmatrix} - & \sigma_{1}v_{1}^{T} & - \\ & \vdots \\ - & \sigma_{n}v_{n}^{T} & - \end{pmatrix} = \Sigma_{i=1}^{n}\sigma_{i}u_{i}v_{i}^{T}$$

SVD and TSVD of an Image

$$A = U\Sigma V^{T} = \sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T} = \sigma_{1} u_{1} v_{1}^{T} + \sigma_{2} u_{2} v_{2}^{T} + \sigma_{3} u_{3} v_{3}^{T} + \dots + \sigma_{n} u_{n} v_{n}^{T}$$

$$A_k = U_k \Sigma_k V_k^T = \Sigma_{i=1}^k \sigma_i u_i v_i^T$$

What is the cost of storing these matrices? What is the cost of computing the matrix A_k ?

Image Compression using SVD k=1 k=50

Matrix Norms and Distances

Definition: The *Frobenius norm* of a matrix A is defined by

$$\|A\|_{F} = \sqrt{a_{11}^{2} + a_{12}^{2} + \dots + a_{mn}^{2}}$$

Examples: $\|\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\|_{F} = \sqrt{30} \text{ y} \|\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\|_{F} = \sqrt{2}$

Definition: The *Frobenius distance* between two matrices A and B is defined by

$$d(A,B) = \|A - B\|_F = \sqrt{(a_{11} - b_{11})^2 + (a_{12} - b_{12})^2 + \dots + (a_{mn} - b_{mn})^2}$$

Example: $d\left(\begin{pmatrix}1 & 2\\3 & 4\end{pmatrix}, \begin{pmatrix}1 & 0\\0 & 1\end{pmatrix}\right) = \|\begin{pmatrix}1 & 2\\3 & 4\end{pmatrix} - \begin{pmatrix}1 & 0\\0 & 1\end{pmatrix}\|_F = \|\begin{pmatrix}0 & 2\\3 & 3\end{pmatrix}\|_F = \sqrt{22}$

Image Compression: Relative Error

Relative Error:

Image Compression: Compression Ratio

Compression Ration: $\frac{mn}{k(m+n+1)}$

Coordinate Systems

"Coordinate Systems" of Matrices

$$\begin{pmatrix} 5 & 5 \\ 3 & 5 \end{pmatrix} = 5 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 5 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 3 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 5 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 5 & 5 \\ 3 & 5 \end{pmatrix} = 3 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + 0 \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} + 2 \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + 0 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

"Coordinate System" for Images

i = 4

ij = 2,2

ij = 3,2

ij = 4,2

ij = 2,3

ij = 3,3

 $i_{j} = 4.3$

-2 0 2

x 10⁻³

ij = 3,4

ij = 2,1

ij = 3,1

ij = 4,1

i = 1

i = 2

i = 3

Fundamentals of Algorithms

Deblurring Images Matrices, Spectra, and Filtering

Per Christian Hansen James G. Nagy Dianne P. O'Leary

siam

Ingrid Daubechies

She developed very special "coordinate systems" that are called Daubechies Wavelets. They are used to compressed images, videos, and music.

Image Deblurring

True image

Blurred and noisy image

Image deblurring problem: Try to reconstruct the true image from a blurred and noisy one.

System of Equations

If a, c, d, e, b_1 and b_2 are known we have a system of equations

$$ax_1 + cx_2 = b_1$$
$$dx_1 + ex_2 = b_2$$

Example:

$$3x_1 + 6x_2 = 12$$

$$5x_1 + 10x_2 = 24$$

Ill-Conditioned System of Equations

Compare

$$x_1 + x_2 = 1$$

$$2x_1 + 2.0001x_2 = 2$$

Exact solution : $x_1 = 1, x_2 = 0$,

with a slightly different system

$$x_1 + x_2 = .99$$
$$2x_1 + 2.0001x_2 = 1.89$$

Exact solution (rounded): $x_1 = 900, x_2 = -899$.

Regularization Methods

Original system $\begin{array}{c} x_1 + & x_2 = .99 \\ 2x_1 + 2.0001x_2 = 1.89 \end{array}$ Exact solution (rounded): $x_1 = 900, x_2 = -899$, Desired solution : $x_1 = 1, x_2 = 0$, **Regularized system** $(1+0.05)x_1 + x_2 = .99$ $2x_1 + (2.0001+0.05)x_2 = 1.89$ Exact solution (rounded): $x_1 = .91$, $x_2 = .03$.

... the solution of the regularized system is closer to the desired solution!

Systems of Equations in Matrix Form

We can write the system

$$x_1 + x_2 = .99$$
$$2x_1 + 2.0001x_2 = 1.89$$

as

Image Deblurring: Math Model

$$Ax = b^{true} + e = b$$

Image deblurring problem: Try to reconstruct the true image from a blurred and noisy one.

The Naïve Solution

Image deblurring is an <u>ill-posed inverse problem</u>: small perturbations in the data may result in large errors in the solution.

Regularized Solution

How Important is λ ?

Choosing λ is very important!

A whole area of research exists just to develop ways to find optimal values of λ .

The Plan

