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The isoperimetric inequality

Theorem: Given a planar figure of area A and perimeter P

4⇡A  P2

Equality occurs if and only if the figure is a disc.

Theorem (Wirtinger inequality): Let f : R ! R be a piecewise C 1

periodic function with period 2⇡ (i.e. f (✓ + 2⇡) = f (✓)).
Let f denote the mean value of f

f =
1

2⇡

ˆ 2⇡

0
f (✓) d✓.

Then ˆ 2⇡

0
[f (✓)� f ]2 d✓ 

ˆ 2⇡

0
[f 0(✓)]2 d✓.

Equality holds if and only if

f (✓) = f + a cos ✓ + b sin ✓

for some constants a, b.
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Fourier series

Let f : R ! R be a piecewise C 1 periodic function with period 2⇡, the
numbers an, bn in (1) and cn in (2) are called the Fourier coe�cients of f .
The corresponding series

1X

�1
cne

in✓ or
1

2
a0 +

1X

n=1

(an cos n✓ + bn sin n✓)

is called the Fourier series of f . Here

an =
1

⇡

ˆ ⇡

�⇡
f (⇣) cos n⇣ d⇣ bn =

1

⇡

ˆ ⇡

�⇡
f (⇣) sin n⇣ d⇣ (1)

cn =
1

2⇡

ˆ ⇡

�⇡
f (⇣)e in⇣ d⇣ (2)
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Examples

f (✓) =

⇢
⇡ � ✓ 0  ✓  ⇡
⇡ + ✓ �⇡  ✓ < 0

f (✓) =

⇢
1 0 < ✓ < ⇡

�1 �⇡ < ✓ < 0
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Does the Fourier series of a periodic function f converge

to f ?
For N 2 N let

S f
N(✓) =

1

2
a0 +

NX

n=1

(an cos n✓ + bn sin n✓) =
NX

�N

cne
in✓ (3)

Theorem: If f : R ! R be a piecewise C 1 periodic function with period
2⇡, and S f

N is defined as in (3) with an, bn and cn defined as in (1) and
(2), then

lim
N!1

S f
N(✓) =

1

2
[f (✓�) + f (✓+)]

for all ✓. In particular,

lim
N!1

S f
N(✓) = f (✓)

for every ✓ at which f is continuous.
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Wirtinger inequality
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f =
1
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Proof: Let

f (✓) =
1
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a0 +

1X

n=1

(an cos n✓ + bn sin n✓)

where a0 = 2f and
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0
[f (✓) � f ]2 d✓ =

ˆ 2⇡

0

" 1X

n=1

(an cos n✓ + bn sin n✓)

#2

d✓

= ⇡
1X

n=1
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f (✓) = f +
1X

n=1

(an cos n✓ + bn sin n✓)

f 0(✓) =
1X

n=1

(�nan sin n✓ + nbn cos n✓)

ˆ 2⇡

0
[f 0(✓)]2 d✓ = ⇡

1X

n=1

n2(a2n + b2n) (Parseval’s equation)

ˆ 2⇡

0
[f 0(✓)]2 d✓ �

ˆ 2⇡

0
[f (✓) � f ]2 d✓ = ⇡

1X

n=1

(n2 � 1)(a2n + b2n) � 0.

Equality occurs if

(n2 � 1)(a2n + b2n) = 0 either n = 1 or an = bn = 0 for n � 2

In this case
f (✓) = f + a1 cos ✓ + b1 sin ✓.
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Second approach to the isoperimetric problem

The Minkowski Addition of 2 sets A, B ⇢ Rn is defined by

A� B := {a+ b : a 2 A and b 2 B}

Warm up:

1 Find [0, 3]⇥ [0, 2]� [0, 2]⇥ [0, 1]

2 Find A� B where A is a triangle and B a rectangle.

3 For a set S ⇢ R2 and ⇢ 2 R, ⇢ > 0 let ⇢S = {⇢x : x 2 S}. Let
⇢ 2 (0, 12), and B = {x 2 R2 : |x |  1} and Q = [0, 1]⇥ [0, 1]. Find
B � ⇢B and Q � ⇢B .

4 Find the area and the perimeter of B � ⇢B and Q � ⇢B .
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Steiner’s Inequality

Note that if ⌦ ⇢ Rn and ⇢ � 0

⌦⇢ = ⌦� ⇢B = {x 2 R2 : dist(x ,⌦)  ⇢}

Theorem: Let ⌦ ⇢ R2 be a closed and bounded set with piecewise C 1

boundary whose area is A and whose boundary has length L. Let ⇢ � 0.
Then

Area(⌦⇢)  A+ L⇢+ ⇡⇢2

L(@⌦⇢)  L+ 2⇡⇢.

If ⌦ is convex then the inequalities are equalities.

Questions:

Verify the equalities for a convex polygon.

Sketch the proof for a convex bounded set.
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Brunn’s inequality

Let A and B be bounded measurable sets in the plane

p
Area(A� B) �

p
Area(A) +

p
Area(B).

Minkowski proved that equality holds if and only if A = rB + x for some
r > 0 and x 2 R2 (i.e. A and B are homothetic).
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Hadwiger’s proof using Steiner’s Inequality

Given a compact set ⌦ ⇢ R2 we define:

inradius

rI = sup{r � 0 : there is x 2 R2 such that x � rB ⇢ ⌦}

incenter is any xI so that the incircle xI � rIB ⇢ ⌦

Isoperimetric Inequality of Hadwiger Suppose ⌦ ⇢ R2 convex with
piecewise C 1 boundary, area A and boundary length L. Let M be a line
through the incenter of ⌦ and a be the length of the chord passing
through the incenter. Then

L2 � 4⇡A � ⇡2

4
(a� 2rI )

2
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