# The isoperimetric problem 

Tatiana Toro<br>University of Washington

Mathematics Sin Fronteras

## The isoperimetric inequality

Theorem: Given a planar figure of area $A$ and perimeter $P$

$$
4 \pi A \leq P^{2}
$$

Equality occurs if and only if the figure is a disc.
Theorem (Wirtinger inequality): Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piecewise $C^{1}$ periodic function with period $2 \pi$ (i.e. $f(\theta+2 \pi)=f(\theta)$ ).
Let $\bar{f}$ denote the mean value of $f$

$$
\bar{f}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta
$$

Then

$$
\int_{0}^{2 \pi}[f(\theta)-\bar{f}]^{2} d \theta \leq \int_{0}^{2 \pi}\left[f^{\prime}(\theta)\right]^{2} d \theta
$$

Equality holds if and only if

$$
f(\theta)=\bar{f}+a \cos \theta+b \sin \theta
$$

for some constants $a, b$.

## Fourier series

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piecewise $C^{1}$ periodic function with period $2 \pi$, the numbers $a_{n}, b_{n}$ in (1) and $c_{n}$ in (2) are called the Fourier coefficients of $f$. The corresponding series

$$
\sum_{-\infty}^{\infty} c_{n} e^{i n \theta} \quad \text { or } \quad \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

is called the Fourier series of $f$. Here

$$
\begin{gather*}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\zeta) \cos n \zeta d \zeta \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\zeta) \sin n \zeta d \zeta \\
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\zeta) e^{i n \zeta} d \zeta \tag{2}
\end{gather*}
$$

## Examples

$$
f(\theta)=\left\{\begin{array}{rr}
\pi-\theta & 0 \leq \theta \leq \pi \\
\pi+\theta & -\pi \leq \theta<0
\end{array}\right.
$$



$$
f(\theta)=\left\{\begin{array}{rr}
1 & 0<\theta<\pi \\
-1 & -\pi<\theta<0
\end{array}\right.
$$



Does the Fourier series of a periodic function $f$ converge to $f$ ?

For $N \in \mathbb{N}$ let

$$
\begin{equation*}
S_{N}^{f}(\theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)=\sum_{-N}^{N} c_{n} e^{i n \theta} \tag{3}
\end{equation*}
$$

## Does the Fourier series of a periodic function $f$ converge

 to $f$ ?For $N \in \mathbb{N}$ let

$$
\begin{equation*}
S_{N}^{f}(\theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)=\sum_{-N}^{N} c_{n} e^{i n \theta} \tag{3}
\end{equation*}
$$

Theorem: If $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piecewise $C^{1}$ periodic function with period $2 \pi$, and $S_{N}^{f}$ is defined as in (3) with $a_{n}, b_{n}$ and $c_{n}$ defined as in (1) and (2), then
for all $\theta$.

$$
\lim _{N \rightarrow \infty} S_{N}^{f}(\theta)=\underbrace{\frac{1}{2}[f(\theta-)+f(\theta+)]}_{f(\theta)}
$$

## Does the Fourier series of a periodic function $f$ converge

 to $f$ ?For $N \in \mathbb{N}$ let

$$
\begin{equation*}
S_{N}^{f}(\theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)=\sum_{-N}^{N} c_{n} e^{i n \theta} \tag{3}
\end{equation*}
$$

Theorem: If $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piecewise $C^{1}$ periodic function with period $2 \pi$, and $S_{N}^{f}$ is defined as in (3) with $a_{n}, b_{n}$ and $c_{n}$ defined as in (1) and (2), then

$$
\lim _{N \rightarrow \infty} S_{N}^{f}(\theta)=\frac{1}{2}[f(\theta-)+f(\theta+)]
$$

for all $\theta$. In particular,

$$
\lim _{N \rightarrow \infty} S_{N}^{f}(\theta)=f(\theta)
$$

for every $\theta$ at which $f$ is continuous.

## Wirtinger inequality

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piecewise $C^{1}$ periodic function with period $2 \pi$,

$$
\bar{f}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta
$$

Then

$$
\int_{0}^{2 \pi}[f(\theta)-\bar{f}]^{2} d \theta \leq \int_{0}^{2 \pi}\left[f^{\prime}(\theta)\right]^{2} d \theta .
$$

Equality holds if and only if

$$
f(\theta)=\bar{f}+a \cos \theta+b \sin \theta
$$

for some constants $a, b$.

## Wirtinger inequality

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piecewise $C^{1}$ periodic function with period $2 \pi$,

$$
\bar{f}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta
$$

Then

$$
\int_{0}^{2 \pi}[f(\theta)-\bar{f}]^{2} d \theta \leq \int_{0}^{2 \pi}\left[f^{\prime}(\theta)\right]^{2} d \theta
$$

Equality holds if and only if

$$
f(\theta)=\bar{f}+a \cos \theta+b \sin \theta
$$

for some constants $a, b$.

Proof: Let


$$
f(\theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

where $a_{0}=2 \bar{f}$ and

$$
\begin{array}{r}
\int_{0}^{2 \pi}[f(\theta)-\bar{f}]^{2} d \theta
\end{array}=\int_{0}^{2 \pi}\left[\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)\right]^{2} d \theta
$$

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)\left(a_{n} \operatorname{cosk} \theta+b_{k} \sin k \theta\right) d \theta \\
& n=k
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{0}^{2 \pi} b_{n} b_{n}^{2} \sin n \theta \sinh \theta+\int_{0}^{2 \pi} \sin _{n}^{2 \pi} a_{k} b_{n} \cos k \theta \sin n \theta d \theta=(\sin 2 n \theta=2 \sin n \theta \cos n \theta) \\
& \int_{0}^{2 \pi} a_{n}^{2} \cos ^{2} n \theta+\int_{0}^{2 \pi} b_{n}^{2} \sin n \theta \quad \cos n^{2} \theta=\frac{1+\cos 2 n \theta}{2} \\
& \frac{1}{2} a_{n}^{2} \int_{0}^{2 \pi} d \theta+\frac{1}{2} b_{n}^{2} \int_{0}^{2 \pi} d \theta=\pi\left(a_{n}^{2}+b_{n}^{2}\right)
\end{aligned}
$$

## Wirtinger inequality

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piecewise $C^{1}$ periodic function with period $2 \pi$,

$$
\bar{f}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta
$$

Then

$$
\int_{0}^{2 \pi}[f(\theta)-\bar{f}]^{2} d \theta \leq^{\prime} \int_{0}^{2 \pi}\left[f^{\prime}(\theta)\right]^{2} d \theta .
$$

Equality holds if and only if

$$
f(\theta)=\bar{f}+a \cos \theta+b \sin \theta
$$

for some constants $a, b$.

## Proof: Let

$$
f(\theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

where $a_{0}=2 \bar{f}$ and

$$
\begin{aligned}
\int_{0}^{2 \pi}[f(\theta)-\bar{f}]^{2} d \theta & =\int_{0}^{2 \pi}\left[\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)\right]^{2} d \theta \\
& =\pi \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
\end{aligned}
$$

$$
f(\theta)=\bar{f}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

$$
\begin{aligned}
f(\theta) & =\bar{f}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) \\
f^{\prime}(\theta) & =\sum_{n=1}^{\infty}\left(-n a_{n} \sin n \theta+n b_{n} \cos n \theta\right)
\end{aligned}
$$

$$
\begin{aligned}
f(\theta) & =\bar{f}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) \\
f^{\prime}(\theta) & =\sum_{n=1}^{\infty}\left(-n a_{n} \sin n \theta+n b_{n} \cos n \theta\right) \\
\int_{0}^{2 \pi}\left[f^{\prime}(\theta)\right]^{2} d \theta & =\pi \sum_{n=1}^{\infty} n^{2}\left(a_{n}^{2}+b_{n}^{2}\right) \quad \text { (Parseval's equation) }
\end{aligned}
$$

$$
\begin{aligned}
& f(\theta)=\bar{f}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) \\
& f^{\prime}(\theta)=\sum_{n=1}^{\infty}\left(-n a_{n} \sin n \theta+n b_{n} \cos n \theta\right) \\
& \int_{0}^{2 \pi}\left[f^{\prime}(\theta)\right]^{2} d \theta=\pi \sum_{n=1}^{\infty} n^{2}\left(a_{n}^{2}+b_{n}^{2}\right) \quad \text { (Parseval's equation) } \\
& \int_{0}^{2 \pi}\left[f^{\prime}(\theta)\right]^{2} d \theta-\int_{0}^{2 \pi}[f(\theta)-\bar{f}]^{2} d \theta=\pi \sum_{n=1}^{\infty}(\underbrace{\geqslant 0}_{\underbrace{n^{2}-1})(\underbrace{a_{n}^{2}+b_{n}^{2}}) \geq 0 .}
\end{aligned}
$$

Equality occurs if

$$
\begin{aligned}
& f(\theta)=\bar{f}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) \\
& f^{\prime}(\theta)=\sum_{n=1}^{\infty}\left(-n a_{n} \sin n \theta+n b_{n} \cos n \theta\right) \\
& \int_{0}^{2 \pi}\left[f^{\prime}(\theta)\right]^{2} d \theta=\pi \sum_{n=1}^{\infty} n^{2}\left(a_{n}^{2}+b_{n}^{2}\right) \quad \text { (Parseval's equation) } \\
& \int_{0}^{2 \pi}\left[f^{\prime}(\theta)\right]^{2} d \theta-\int_{0}^{2 \pi}[f(\theta)-\bar{f}]^{2} d \theta=\pi \sum_{n=1}^{\infty}\left(n^{2}-1\right)\left(a_{n}^{2}+b_{n}^{2}\right) \geq 0 .
\end{aligned}
$$

Equality occurs if

$$
\left(n^{2}-1\right)\left(a_{n}^{2}+b_{n}^{2}\right)=0 \text { either } n=1 \text { or } a_{n}=b_{n}=0 \text { for } n \geq 2
$$

In this case

$$
f(\theta)=\bar{f}+a_{1} \cos \theta+b_{1} \sin \theta .
$$

## Second approach to the isoperimetric problem

The Minkowski Addition of 2 sets $A, B \subset \mathbb{R}^{n}$ is defined by

$$
A \boxplus B:=\{a+b: a \in A \text { and } b \in B\}
$$

Warm up:
(1) Find $[0,3] \times[0,2] \boxplus \underbrace{[0,2] \times[0,1]}=[0,5] \times[0,3]$


## Second approach to the isoperimetric problem

The Minkowski Addition of 2 sets $A, B \subset \mathbb{R}^{n}$ is defined by

$$
A \boxplus B:=\{a+b: a \in A \text { and } b \in B\}
$$

Warm up:
(1) Find $[0,3] \times[0,2] \boxplus[0,2] \times[0,1]$
(2) Find $A \boxplus B$ where $A$ is a triangle and $B$ a rectangle.


## Second approach to the isoperimetric problem

The Minkowski Addition of 2 sets $A, B \subset \mathbb{R}^{n}$ is defined by

$$
A \boxplus B:=\{a+b: a \in A \text { and } b \in B\}
$$

Warm up:
(1) Find $[0,3] \times[0,2] \boxplus[0,2] \times[0,1]$
(2) Find $A \boxplus B$ where $A$ is a triangle and $B$ a rectangle.
(3) For a set $S \subset \mathbb{R}^{2}$ and $\rho \in \mathbb{R}, \rho>0$ let $\rho S=\{\rho x: x \in S\}$. Let $\rho \in\left(0, \frac{1}{2}\right)$, and $B=\left\{x \in \mathbb{R}^{2}:|x| \leq 1\right\}$ and $Q=[0,1] \times[0,1]$. Find $B \boxplus \rho B$ and $Q \boxplus \rho B$.
(9) Find the area and the perimeter of $B \boxplus \rho B$ and $Q \boxplus \rho B$.

$$
\begin{aligned}
& B=\{x:|x|<1\} \quad \rho \in\left(0, \frac{1}{2}\right) \quad \rho S=\{p x: x \in S\} \\
& Q=[0,1] \times[0,1] \\
& B \boxplus \rho B=B(0,1+\rho) \\
& \text { (s) }
\end{aligned}
$$

$$
\begin{aligned}
& L(Q ⿴ \rho B)=4+2 \pi \rho \\
& A(B \boxplus \rho B)=\pi(1+\rho)^{2}=\frac{\downarrow}{\pi}+\frac{2 \pi}{2} \rho \cdot+\pi \rho^{2} \text { area } \rho B \\
& L(B ⿴ \rho B)=2 \pi(1+\rho)=2 \pi+2 \pi \rho
\end{aligned}
$$

## Steiner's Inequality

Note that if $\Omega \subset \mathbb{R}^{2}$ and $\rho \geq 0$

$$
\Omega_{\rho}=\Omega \boxplus \rho B=\left\{x \in \mathbb{R}^{2}: \operatorname{dist}(x, \Omega) \leq \rho\right\}
$$

## Steiner's Inequality

Note that if $\Omega \subset \mathbb{R}^{n}$ and $\rho \geq 0$

$$
\Omega_{\rho}=\Omega \boxplus \rho B=\left\{x \in \mathbb{R}^{2}: \operatorname{dist}(x, \Omega) \leq \rho\right\}
$$

Theorem: Let $\Omega \subset \mathbb{R}^{2}$ be a closed and bounded set with piecewise $C^{1}$ boundary whose area is $A$ and whose boundary has length $L$. Let $\rho \geq 0$. Then

$$
\begin{aligned}
\operatorname{Area}\left(\Omega_{\rho}\right) & \leq A+L \rho+\pi \rho^{2} \\
L\left(\partial \Omega_{\rho}\right) & \leq L+2 \pi \rho
\end{aligned}
$$

If $\Omega$ is convex then the inequalities are equalities.

## Steiner's Inequality

Note that if $\Omega \subset \mathbb{R}^{n}$ and $\rho \geq 0$

$$
\Omega_{\rho}=\Omega \boxplus \rho B=\left\{x \in \mathbb{R}^{2}: \operatorname{dist}(x, \Omega) \leq \rho\right\}
$$

Theorem: Let $\Omega \subset \mathbb{R}^{2}$ be a closed and bounded set with piecewise $C^{1}$ boundary whose area is $A$ and whose boundary has length $L$. Let $\rho \geq 0$. Then

$$
\begin{aligned}
\operatorname{Area}\left(\Omega_{\rho}\right) & \leq A+L \rho+\pi \rho^{2} \\
L\left(\partial \Omega_{\rho}\right) & \leq L+2 \pi \rho
\end{aligned}
$$

If $\Omega$ is convex then the inequalities are equalities.

Questions:

- Verify the equalities for a convex polygon.
- Sketch the proof for a convex bounded set.


$$
\begin{aligned}
\Omega_{\rho} & =\Omega 母 \rho B \\
& =\{x: \operatorname{dist}(\lambda, \Omega) \leq \rho\}
\end{aligned}
$$


take lunct on the \# sides gorng to mfonity

## Brunn's inequality

Let $A$ and $B$ be bounded measurable sets in the plane

$$
\sqrt{\operatorname{Area}(A \boxplus B)} \geq \sqrt{\operatorname{Area}(A)}+\sqrt{\operatorname{Area}(B)}
$$

## Bran's inequality

Let $A$ and $B$ be bounded measurable sets in the plane

$$
\sqrt{\operatorname{Area}(A \boxplus B)} \geq \sqrt{\operatorname{Area}(A)}+\sqrt{\operatorname{Area}(B)}
$$

Minkowski proved that equality holds if and only if $A=r B+x$ for some $r>0$ and $x \in \mathbb{R}^{2}$ (i.e. $A$ and $B$ are homothetic).

$$
\begin{gathered}
A=[0,3] \times[0,2] \quad B=[0,2] \times[0,1] \\
A \oplus B=[0,5] \times[0,3] \\
\text { real }(A \boxplus B)=\sim^{3.87}=\sqrt{15} \quad \sqrt{\text { Area }(A)}+\sqrt{\text { Area } B}=\sqrt{6}+\sqrt{2}
\end{gathered}
$$

$$
\begin{aligned}
A= & {[0, a] \times[0, b] \quad B=[0, c] \times[0, d] } \\
& A[ \pm=[0, a+c] \times[0, b+d]
\end{aligned}
$$

$$
\text { Area }(A \boxplus B)=(a+c)(b+d)=a b+\underline{c d}+\underbrace{a d+b c}
$$

want

$$
a d+b c \geqslant 2 \sqrt{a d} \sqrt{b c} \text { ? }
$$

$$
\sqrt{\operatorname{area}(A)}+\sqrt{\operatorname{area} B}=\sqrt{a b}+\sqrt{c d}
$$

Want

$$
\begin{aligned}
& \operatorname{Arca}(A \oplus B) \geqslant \\
& \begin{array}{c}
\operatorname{arax} A+\operatorname{area} B+2 \sqrt{\operatorname{area}(A)} \sqrt{\operatorname{area} B}(A)
\end{array} \\
&a b+\sqrt{\operatorname{area}(B)})^{2}
\end{aligned}
$$

$$
a d+b c \geqslant 2 \sqrt{a d} \sqrt{b c}
$$

(1) arithmetic-geonctic mean inequality $u, v \geqslant 0$

$$
\frac{u+v}{2}-\sqrt{u v} \geqslant \frac{1}{2}(\sqrt{u}-\sqrt{v})^{2} \geqslant 0
$$

(2) $(\sqrt{a d}-\sqrt{b c})^{2}=a d+b c-2 \sqrt{a d} \sqrt{b c} \geqslant 0$

## Hadwiger's proof using Steiner's Inequality

Given a compact set $\Omega \subset \mathbb{R}^{2}$ we define:

- inradius

$$
r_{I}=\sup \left\{r \geq 0: \text { there is } x \in \mathbb{R}^{2} \text { such that } x \boxplus r B \subset \Omega\right\}
$$

- incenter is any $x_{l}$ so that the incircle $x_{l} \boxplus r_{l} B \subset \Omega$



## Hadwiger's proof using Steiner's Inequality

Given a compact set $\Omega \subset \mathbb{R}^{2}$ we define:

- inradius

$$
r_{l}=\sup \left\{r \geq 0: \text { there is } x \in \mathbb{R}^{2} \text { such that } x \boxplus r B \subset \Omega\right\}
$$

- incenter is any $x_{l}$ so that the incircle $x_{l} \boxplus r_{l} B \subset \Omega$

Isoperimetric Inequality of Hadwiger Suppose $\Omega \subset \mathbb{R}^{2}$ convex with piecewise $C^{1}$ boundary, area $\mathcal{A}$ and boundary length $\mathcal{L}$. Let $M$ be a line through the incenter of $\Omega$ and a be the length of the chord passing through the incenter. Then

$$
\mathcal{L}^{2}-4 \pi \mathcal{A} \geq \frac{\pi^{2}}{4}\left(a-2 r_{l}\right)^{2} \quad\left(\begin{array}{l}
P \geqslant 4 \pi A \\
\text { बrea } A)^{\frac{n-1}{n}} \leq c_{n} P
\end{array}\right.
$$



## GRACIAS POR SU ATENCION!

