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The isoperimetric inequality

Theorem: Given a planar figure of area A and perimeter P

4⇡A  P2

Equality occurs if and only if the figure is a disc.

Theorem (Wirtinger inequality): Let f : R ! R be a piecewise C 1

periodic function with period 2⇡ (i.e. f (✓ + 2⇡) = f (✓)).
Let f denote the mean value of f

f =
1

2⇡

ˆ 2⇡

0
f (✓) d✓.

Then ˆ 2⇡

0
[f (✓)� f ]2 d✓ 

ˆ 2⇡

0
[f 0(✓)]2 d✓.

Equality holds if and only if

f (✓) = f + a cos ✓ + b sin ✓

for some constants a, b.
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Fourier analysis

The central idea of Fourier analysis is to decompose a function into a
combination of simpler functions. The simpler functions are the building
blocks. Sine and cosine functions are examples of building blocks.

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Major triad.svg/1200px-Major triad.svg.png
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Let f : R ! R be a piecewise C 1
periodic function with period 2⇡ (i.e.

f (✓ + 2⇡) = f (✓)). Can f be expanded as a series of the form

f (✓) =
1

2
a0 +

1X

n=1

(an cos n✓ + bn sin n✓) ? (1)

Recall that e ix = cos x + i sin x . Thus

cos n✓ =
e in✓ + e�in✓

2
and sin n✓ =

e in✓ � e�in✓

2i
.

Thus (1) can be rewritten as

f (✓) =
1X

�1
cne

in✓
(2)

where for n 2 N

c0 =
1

2
a0; cn =

1

2
(an � ibn); c�n =

1

2
(an + ibn) (3)

equivalently

a0 = 2c0; an = cn + c�n; bn = i(cn � c�n). (4)
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Assume f admits a series expansion of the form (2), how can we compute

cn in terms of f ?
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Fourier series

Let f : R ! R be a piecewise C 1
periodic function with period 2⇡, the

numbers an, bn in (1) and cn in (2) are called the Fourier coe�cients of f .
The corresponding series

1X

�1
cne

in✓
or

1

2
a0 +

1X

n=1

(an cos n✓ + bn sin n✓)

is called the Fourier series of f .

Here

an =
1

⇡

ˆ ⇡

�⇡
f (⇣) cos n⇣ d⇣ bn =

1

⇡

ˆ ⇡

�⇡
f (⇣) sin n⇣ d⇣ (5)

cn =
1

2⇡

ˆ ⇡

�⇡
f (⇣)e in⇣ d⇣ (6)
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Special cases

f
even

f (�✓) = f (✓) an =
2

⇡

ˆ ⇡

0
f (✓) cos n✓ d✓ bn = 0

f
odd

f (�✓) = �f (✓) an = 0 bn =
2

⇡

ˆ ⇡

0
f (✓) sin n✓ d✓

Compute the Fourier series for the following functions:

f (✓) =

⇢
⇡ � ✓ 0  ✓  ⇡
⇡ + ✓ �⇡  ✓ < 0

f (✓) =

⇢
1 0 < ✓ < ⇡

�1 �⇡ < ✓ < 0
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Example 1

f (✓) =

⇢
⇡ � ✓ 0  ✓  ⇡
⇡ + ✓ �⇡  ✓ < 0

Tatiana Toro (University of Washington) Part II April 28, 2021

l



① f lol = f t - O o so sit

IT to -1T E ⑦ SO

Properties : ① f- C - o ) = f- CO ) f even

an - ¥ [ fool cos no do n -- oil ,2



[ f-Cot cos no do = fo
"

Ct - O ) cos no do

= I f.
"

cos no da - fo
"

O cos no do

If I I t fo
"

do - to do = to - EE. III
n to In lot - f! o cos no do payntegrpatwifsn

=
-oi- fo

"

sinnno do = - wasnt I!



""

an -- ÷ [ fool cos .no do -

- El - WIFI! )
an = ¥ .

- tilts = f
O ' f n even

¥2 't n odd

neo Ao = 2¥ . It = IT
The Fourier series of f is

It E. Z
.
.
.
.

.
TE

⇐oCoskkH⇒
12kt



Example 2

f (✓) =

⇢
1 0 < ✓ < ⇡

�1 �⇡ < ✓ < 0
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Does the Fourier series of a periodic function f converge
to f ?
For N 2 N let

S f
N(✓) =

1

2
a0 +

NX

n=1

(an cos n✓ + bn sin n✓) =
NX

�N

cne
in✓

(7)

Theorem: If f : R ! R be a piecewise C 1
periodic function with period

2⇡, and S f
N is defined as in (7) with an, bn and cn defined as in (5) and

(6), then

lim
N!1

S f
N(✓) =

1

2
[f (✓�) + f (✓+)]

for all ✓. In particular,

lim
N!1

S f
N(✓) = f (✓)

for every ✓ at which f is continuous.
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