The isoperimetric problem

Tatiana Toro
University of Washington

Mathematics Sin Fronteras

The isoperimetric inequality

Theorem: Given a planar figure of area A and perimeter P

$$
4 \pi A \leq P^{2}
$$

Equality occurs if and only if the figure is a disc.

The isoperimetric inequality

Theorem: Given a planar figure of area A and perimeter P

$$
4 \pi A \leq P^{2}
$$

Equality occurs if and only if the figure is a disc.
Theorem (Wirtinger inequality): Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piecewise C^{1} periodic function with period 2π (i.e. $f(\theta+2 \pi)=f(\theta)$).
Let \bar{f} denote the mean value of f

$$
\bar{f}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta
$$

Then

$$
\int_{0}^{2 \pi}[f(\theta)-\bar{f}]^{2} d \theta \leq \int_{0}^{2 \pi}\left[f^{\prime}(\theta)\right]^{2} d \theta
$$

Equality holds if and only if

$$
f(\theta)=\bar{f}+a \cos \theta+b \sin \theta
$$

for some constants a, b.

Fourier analysis

The central idea of Fourier analysis is to decompose a function into a combination of simpler functions. The simpler functions are the building blocks. Sine and cosine functions are examples of building blocks.

Fourier analysis

The central idea of Fourier analysis is to decompose a function into a combination of simpler functions. The simpler functions are the building blocks. Sine and cosine functions are examples of building blocks.

[^0]Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piecewise C^{1} periodic function with period 2π (i.e. $f(\theta+2 \pi)=f(\theta))$. Can f be expanded as a series of the form

$$
\begin{equation*}
f(\theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) ? \tag{1}
\end{equation*}
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piecewise C^{1} periodic function with period 2π (i.e. $f(\theta+2 \pi)=f(\theta))$. Can f be expanded as a series of the form

$$
\begin{equation*}
\underset{\substack{ \\x \in \mathbb{R}}}{f(\theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) ?} \tag{1}
\end{equation*}
$$

Recall that $e^{i x}=\cos x+i \sin x$. Thus

$$
\begin{aligned}
& \cos n \theta=\frac{e^{i n \theta}+e^{-i n \theta}}{2} \text { and } \sin n \theta=\frac{e^{i n \theta}-e^{-i n \theta}}{2 i} . \\
& +\frac{e^{i n \theta}=\cos n \theta+i \sin n \theta}{e^{-i n \theta}=\cos (-n \theta)+i \sin (-n \theta)=\cos n \theta-i \sin n \theta} \\
& e^{i n \theta}+e^{-i n \theta}=2 \cos n \theta
\end{aligned}
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piecewise C^{1} periodic function with period 2π (i.e. $f(\theta+2 \pi)=f(\theta))$. Can f be expanded as a series of the form

$$
\begin{equation*}
f(\theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) ? \tag{1}
\end{equation*}
$$

Recall that $e^{i x}=\cos x+i \sin x$. Thus

$$
\cos n \theta=\frac{e^{i n \theta}+e^{-i n \theta}}{2} \text { and } \sin n \theta=\frac{e^{i n \theta}-e^{-i n \theta}}{2 i}
$$

Thus (1) can be rewritten as

$$
\begin{equation*}
f(\theta)=\sum_{-\infty}^{\infty} c_{n} e^{i n \theta} \tag{2}
\end{equation*}
$$

where for $n \in \mathbb{N}$

$$
\begin{equation*}
c_{0}=\frac{1}{2} a_{0} ; \quad c_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right) ; \quad c_{-n}=\frac{1}{2}\left(a_{n}+i b_{n}\right) \tag{3}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
a_{0}=2 c_{0} ; \quad a_{n}=c_{n}+c_{-n} ; \quad b_{n}=i\left(c_{n}-c_{-n}\right) \tag{4}
\end{equation*}
$$

Assume f admits a series expansion of the form (2), how can we compute c_{n} in terms of f ?

$$
\begin{gathered}
\rightarrow f(\theta)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n \theta}, \text { who is } c_{n} ? \\
e^{i n \theta}=\cos n \theta+i \sin n \theta \quad n \in \mathbb{Z} \\
\int_{-\pi}^{\pi} f(\theta) e^{-i k \theta} d \theta=\sum_{-\infty}^{\infty} c_{n} \underbrace{\int_{-\pi}^{\pi} e^{i n \theta} e^{-i k \theta} d \theta}_{-\pi} \\
\int_{-\pi}^{\pi} e^{i(n-k) \theta} d \theta=\left\{\left.\begin{array}{ll}
\int_{-\pi}^{\pi} d \theta=2 \pi \\
i(n-k)
\end{array} e^{i(n-k) \theta}\right|_{-\pi} ^{\pi} \quad \text { if } n \neq k\right.
\end{gathered}
$$

$$
\begin{aligned}
& \cos (n-k) \pi+i \sin (n-k) \pi) \\
& -(\cos -(n-k) \pi+i \sin (\ln -k) \pi) \\
& =\cos (n-k) \pi-\cos (n-k) \pi=0
\end{aligned}
$$

$$
\int_{-\pi}^{\pi} f(\theta) e^{-i k \theta} \begin{aligned}
& d \theta=2 \pi c_{k} \\
& c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{-i k \theta} d \theta \\
& c_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) d \theta=\bar{f}
\end{aligned}
$$

Fourier series

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piecewise C^{1} periodic function with period 2π, the numbers a_{n}, b_{n} in (1) and c_{n} in (2) are called the Fourier coefficients of f. The corresponding series

$$
\sum_{-\infty}^{\infty} c_{n} e^{i n \theta} \quad \text { or } \quad \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

is called the Fourier series of f.

Fourier series

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piecewise C^{1} periodic function with period 2π, the numbers a_{n}, b_{n} in (1) and c_{n} in (2) are called the Fourier coefficients of f. The corresponding series

$$
\sum_{-\infty}^{\infty} c_{n} e^{i n \theta} \quad \text { or } \quad \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

is called the Fourier series of f. Here

$$
\begin{gather*}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\zeta) \cos n \zeta d \zeta \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\zeta) \sin n \zeta d \zeta \\
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\zeta) e^{i n \zeta} d \zeta \tag{6}
\end{gather*}
$$

Special cases

f even	$f(-\theta)=f(\theta)$	$a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \cos n \theta d \theta$	$b_{n}=0$
f odd	$f(-\theta)=-f(\theta)$	$a_{n}=0$	$b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \sin n \theta d \theta$

$$
\begin{aligned}
& f(-\theta)=f(\theta) \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos n \theta d \theta \\
& a_{n}=\frac{1}{\pi}\left[\int_{-\pi}^{0} f(\theta) \cos n \theta d \theta+\int_{0}^{\pi} f(\theta) \cos n \theta d \theta\right] \\
& \begin{array}{l}
f f \cos \\
\text { even }
\end{array} \quad \begin{array}{l}
u=-\theta \quad d u=-d \theta \\
f(u) \cos n u
\end{array} \\
& a_{n}=\frac{1}{\pi}[\int_{\pi_{a}}^{0} \overbrace{f(-u)}^{f(u)} \overbrace{\cos n(-u)}^{\cos n u}(-d u)+\int_{0}^{\pi} f(\theta) \cos n \theta d \theta]=\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \cos n \theta d \theta
\end{aligned}
$$

Special cases

f even	$f(-\theta)=f(\theta)$	$a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \cos n \theta d \theta$	$b_{n}=0$
f odd	$f(-\theta)=-f(\theta)$	$a_{n}=0$	$b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \sin n \theta d \theta$

Compute the Fourier series for the following functions:

$$
f(\theta)=\left\{\begin{array}{rr}
\pi-\theta & 0 \leq \theta \leq \pi \\
\pi+\theta & -\pi \leq \theta<0
\end{array} \quad f(\theta)=\left\{\begin{array}{rr}
1 & 0<\theta<\pi \\
-1 & -\pi<\theta<0
\end{array}\right.\right.
$$

Example 1

$$
f(\theta)=\left\{\begin{array}{rr}
\pi-\theta & 0 \leq \theta \leq \pi \\
\pi+\theta & -\pi \leq \theta<0
\end{array}\right.
$$

(1) $f(\theta)= \begin{cases}\pi-\theta & 0 \leqslant \theta \leqslant \pi \\ \pi+\theta & -\pi \leqslant \theta \leqslant 0\end{cases}$

Properties: (1) $\quad f(-\theta)=f(\theta)$ i even

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \cos n \theta d \theta \quad n=0,1,2
$$

$$
\begin{aligned}
& \int_{0}^{\pi} f(\theta) \cos n \theta d \theta=\int_{0}^{\pi}(\pi-\theta) \cos n \theta d \theta \\
& =\pi \int_{0}^{\pi} \cos n \theta d \theta-\int_{0}^{\pi} \theta \cos n \theta d \theta \\
& \text { If } n=0 \quad \pi \int_{0}^{\pi} d \theta-\int_{0}^{\pi} \theta d \theta=\pi \theta-\left.\frac{\theta^{2}}{2}\right|_{0} ^{\pi}=\frac{\pi^{2}}{2} \\
& n \neq\left. 0 \quad \frac{\pi}{n} \sin n \theta\right|_{0} ^{\pi}-\int_{0}^{\pi} \theta \cos n \theta d \theta \quad \text { integration parts } \\
& =-\left.\theta \frac{\sin n \theta}{n}\right|_{0} ^{\pi}+\int_{0}^{\pi} \frac{\sin n \theta}{n} d \theta=-\left.\frac{\cos n \theta}{n^{2}}\right|_{0} ^{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& n \neq 0 \\
& \quad a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \cos n \theta d \theta=\frac{2}{\pi}\left(-\left.\frac{\cos n \theta}{n^{2}}\right|_{0} ^{\pi}\right) \\
& a_{n}=\frac{2}{\pi} \cdot-\frac{(-1)^{n}+1}{n^{2}}=\left\{\begin{array}{lll}
0 & \text { if } & n \text { even } \\
\frac{4}{\pi n^{2}} & \text { if } & n \text { odd }
\end{array}\right. \\
& n=0 \quad a_{0}=\frac{2}{\pi} \cdot \frac{\pi^{2}}{2}=\pi
\end{aligned}
$$

The Fourier series of f is

$$
\begin{aligned}
& \frac{\pi}{2}+\frac{4}{\pi} \sum_{n=1,3,5} \frac{\cos n \theta}{n^{2}} \\
& =\pi / 2+4 / \pi \sum_{k=0} \frac{\cos (2 k+1) \theta}{(2 k+1)^{2}}
\end{aligned}
$$

Example 2

$$
f(\theta)=\left\{\begin{array}{rr}
1 & 0<\theta<\pi \\
-1 & -\pi<\theta<0
\end{array}\right.
$$

(2) $f(\theta)=\left\{\begin{array}{cc}-1 & -\pi<\theta<0 \\ 1 & 0<\theta<\pi\end{array}\right.$

Properties: $f(-\theta)=-f(\theta) \quad f$ odd

$$
a_{n}=0 \quad f \quad b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \sin n \theta d \theta \quad n=1,2,3
$$

$$
\begin{aligned}
\int_{0}^{\pi} f(\theta) \sin n \theta d \theta= & \int_{0}^{\pi} \sin n \theta d \theta=-\left.\frac{\cos n \theta}{n}\right|_{0} ^{\pi} \\
= & =-\frac{(-1)^{n}-1}{n}=\left\{\begin{array}{lll}
0 & \text { if } n \text { even } \\
\frac{2}{n} & \text { if } n \text { odd }
\end{array}\right. \\
b_{n} & =\left\{\begin{array}{lll}
0 & \text { if } n \text { even } \\
\frac{4}{\pi n} & \text { if } n \text { is odd }
\end{array}\right.
\end{aligned}
$$

the Fourier serves is $\frac{4}{\pi} \sum_{n=1,3,5} \frac{\sin n \theta}{n}$

$$
\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\sin (2 k+1) \theta}{2 k+1}
$$

Does the Fourier series of a periodic function f converge to f ?

For $N \in \mathbb{N}$ let

$$
\begin{equation*}
S_{N}^{f}(\theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)=\sum_{-N}^{N} c_{n} e^{i n \theta} \tag{7}
\end{equation*}
$$

[^0]: https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Major_triad.svg/1200px-Major_triad.svg.png

