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1 Lecture I

In the first lecture we define what is a curve, its length and other geometric quantities such
as the tangent vector and the curvature.

1.1 Basic definitions and examples

Definition 1.1. A curve on M is a function γ : I →M , with I ⊆ R.

Remark.

1. In general, I will be an interval.

2. In this course M will always be some Euclidean space Rn. Nevertheless, the previous
definition can be generalized when M is a manifold.

3. We will always think that γ is smooth enough, i.e., that γi(t) are smooth enough
for i = 1, . . . , n, where γ(t) = (γ1(t), . . . , γn(t)) (C3 is more than necessary for our
purposes).

Example 1.2.

1.

γ : R→ R2,

x 7→ (x, x2).

2.

γ : [0, 2π)→ R2,

θ 7→ (cos θ, sin θ).
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3.

γ : R→ R3,

t 7→ (cos t, sin t, t).

Definition 1.3. A curve γ : [a, b]→M is closed if γ(a) = γ(b).

Definition 1.4. A curve is embedded if it does not self intersect. That is, the function is
injective. Otherwise, we say that the curve is immersed.

Example 1.5. The lemniscate is an example of a curve which is immersed but not embedded.

1.2 How do we compute the length?

Consider a curve γ : I → R2. If we want to obtain the length of a portion of the curve, we
first approximate this portion by a polygonal path and then we calculate the length of the
polygonal path, in order to obtain an approximation of the wanted length.

Example 1.6. Consider the following curve with the following polygonal path
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In this case, if we write ∆xi = x(ti+1) − x(ti) and ∆yi = y(ti+1) − y(ti), then we have the
approximation

L ∼
4∑
i=1

√
(∆xi)2 + (∆yi)2.

This motivates the following definition

Definition 1.7. Consider γ : [a, b]→ R2. The length of γ is defined by

L(γ) :=

ˆ b

a

|γ′(t)|dt.

Example 1.8.

1. Consider the curve

γ : [0, 2π]→ R2,

θ 7→ 2(cos θ, sin θ).

We have that γ′(θ) = 2(− sin θ, cos θ). Then,

L(γ) =

ˆ 2π

0

√
4(sin2 θ + cos2 θ)dθ = 4π.

2. Now consider

γ : [−1, 1]→ R2,

t 7→ (t, 2t+ 1).

Notice that γ′(t) = (1, 2). Then,

L(γ) =

ˆ 1

−1

√
1 + 4dt = 2

√
5.

1.3 Some geometric quantities

1.3.1 The tangent vector

Definition 1.9. Let γ : [a, b] → R2 be a curve. The unit tangent vector at t0 ∈ (a, b) is
defined by

τ(t0) =
γ′(t0)

|γ′(t0)|
.

Remark. This is only well defined if γ′(t0) 6= 0. Points at which this holds are called regular.
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Example 1.10.

1. For the curve

γ : [0, 2π]→ R2,

θ 7→ 2(cos θ, sin θ),

we have that γ′(θ) = 2(− sin θ, cos θ). Then, |γ′(θ)| =
√

4 sin2 θ + 4 cos2 θ = 2. There-
fore,

τ(θ0) =
γ′(θ0)

|γ′(θ0)|
= (− sin θ0, cos θ0).

2. If we consider

γ : [−1, 1]→ R2,

t 7→ (t, 2t+ 1),

then, γ′(t) = (1, 2). From this, |γ′(t)| =
√

1 + 4 =
√

5. Thus

τ(t0) =
γ′(t0)

|γ′(t0)|
=

(
1√
5
,

2√
5

)
.

1.3.2 The arc-length parameter

The same geometric object can be described in different ways, to see this, consider the
following.

Example 1.11. The following maps define the same geometric object, the unitary semicircle
centered at the origin:

γ1 : [0, π]→ R2,

θ 7→ (cos θ, sin θ),

γ2 : [−1, 1]→ R2,

x 7→ (x,
√

1− x2),

A choice of description is called a parametrization. The curve will be from now on the
geometric object, that is, the set

{γ(t); t ∈ [a, b]}.
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Let γ : [a, b]→ R2. We define the function

s(x) =

ˆ x

a

|γ′(λ)|dλ.

Notice that s is a function from the interval [a, b] to [0, L(γ)] and is increasing. This
implies that s is invertible and we can use to it to parametrize γ:

γ : [0, L(γ)]→ R2,

s 7→ γ(x(s)).

Here, x is the inverse of s.

Definition 1.12. The previous parametrization is called the arc-length parametrization.

Remark. Using the chain rule we obtain

dγ

ds
=
dγ

dx
· dx
ds

=
γ′(x)

|γ′(x)|
= τ(s).

From this calculation, we see that why is useful consider a curve with its arc-length
parametrization.

Example 1.13.

1. As before, consider the curve

γ : [0, 2π]→ R2,

θ 7→ 2(cos θ, sin θ).

We computed that γ′(θ) = 2(− sin θ, cos θ). Then

s =

ˆ x

0

√
4(sin2 θ + cos2 θ)dθ = 2x.

Using this, we find that

γ : [0, 4π]→ R2,

s 7→ 2
(

cos
s

2
, sin

s

2

)
,

is the arc- length parametrization of γ. Also,

τ(s) = γ′(s) =
(
− sin

s

2
, cos

s

2

)
.
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2. Similarly, consider

γ : [−1, 1]→ R2,

t 7→ (t, 2t+ 1).

As before, γ′(t) = (1, 2). Then,

s =

ˆ x

−1

√
1 + 4dt =

√
5(x+ 1).

Finally,

γ : [0, 2
√

5]→ R2,

s 7→
(
s√
5
− 1, 2

(
s√
5
− 1

)
+ 1

)
,

is the arc-length parametrization of γ. From this, we can calculate the tangent vector
of the curve:

τ(s) = γ′(s) =

(
1√
5
,

2√
5

)
.

1.3.3 What is curvature?

Definition 1.14. Consider γ : [0, L(s)] → R2 parametrized in arc-length parameter. We
define the curvature of γ by

κ(s) := |γ′′(s)|.

When κ(s) 6= 0, we can define the normal vector of a curve:

Definition 1.15. Let γ : [0, L(s)] → R2 be a curve parametrized in arc-length. arco-
parametrizada. We define the normal vector of γ (at s0) ν as the vector such that {τ, ν} is
a positive basis. Also, we define the signed curvature by

γ′′(s) = κν.

Remark. Curves that satisfy γ′′(s) 6= 0 for all s are usually called biregular.

Let us give the geometric intuition that is behind the definition of curvature. In order
to do this, let γ(s) be a biregular curve. At a point s0, consider a circle that passes through
γ(s0) and that have common tangent line to γ at s0. It can be shown that the curvature of
γ at s0 is exactly the inverse of the radius of this circle. This is the “geometric equivalent”
of a Taylor approximation of order 2.
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Example 1.16.

1. Consider the curve

γ : [0, 2π]→ R2,

θ 7→ 2(cos θ, sin θ).

We already know that its arc-length parametrization is

γ : [0, 4π]→ R2,

s 7→ 2
(

cos
s

2
, sin

s

2

)
,

and τ(s) =
(
cos s

2
, sin s

2

)
. From this, γ′′(s) = 1

2

(
− sin s

2
, cos s

2

)
, and we obtain κ(s) =

|γ′′(s)| = 1
2
. Also, ν(s) =

(
− sin s

2
, cos s

2

)
.

2. Consider the curve

γ : [−1, 1]→ R2,

t 7→ (t, 2t+ 1).

Recall that

γ : [0, 2
√

5]→ R2,

s 7→
(
s√
5
− 1, 2

(
s√
5
− 1

)
+ 1

)
,

is the arc-length parametrization of γ and that τ(s) = 1√
5
(1, 2). This implies that

κ(s) = |γ′′(s)| = 0.

So far we have defined the curvature and we gave an geometric interpretation, but why
is the curvature a natural quantity to study? To answer this question, given a arc-length
parametrized curve γ(s), consider a normal variation of it, that is
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γ̃(s, t) = γ(s) + tϕ(s)ν(s)

Clearly ∣∣∣∣dγ̃ds
∣∣∣∣ = |γ′(s) + tϕν + tϕν ′|,

where the prime denotes the derivative with respect the arc-length parameter. Then,

L(γ̃)(t) =

ˆ L(γ)

0

|τ(s) + tϕ′ν + tϕν ′|ds.

We know all the terms in this expression, except for ν ′. To find it, first recall that at
each s, {τ(s), ν(s)} is an orthonormal basis of R2. This allows us to write

ν ′(s) = a(s)τ(s) + b(s)ν(s).

Since 〈ν, ν〉 = 1, we obtain 〈ν ′, ν〉 = 0, and from 〈ν, τ〉 = 0, we conclude 〈ν ′, τ〉 = −〈ν, τ ′〉.
Therefore,

ν ′(s) = −κτ.

In resume, we have that

L(γ̃)(t) =

ˆ L(γ)

0

|(1− tκϕ)τ(s) + tϕ′ν|ds.

To calculate the derivative of this expression, first notice that

d

dt
|(1− tκϕ)τ(s) + tϕ′ν|2 =

d

dt
[(1− tκϕ)2 + t2(ϕ′)2] = −2κϕ(1− tκϕ) + 2t(ϕ′)2.

Therefore,

d

dt
L(γ̃)(t)

∣∣∣∣
t=0

= −
ˆ L(γ)

0

κϕds.
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1.4 Exercises

Exercise 1.1. Let γ be a curve such that γ′′ ≡ 0. ¿What can you say about γ?

Exercise 1.2. A circular disk of radius 1 in the plane xy rolls without slipping along the x
axis. The figure described by a point of the circumference of the disk is called a cycloid

1. Obtain a parametrization of the cycloid, and determine its singular points (i.e., the
points where the parametrization is not regular).

2. Compute the length of the cycloid corresponding to a complete rotation of the disk.

Exercise 1.3. Compute the tangent and the normal vector, in addition to the curvature of
the curve (x,− ln(cosx)).

Exercise 1.4. Compute the same quantities of the previous exercises but now for the curve
(x, u(x)), where u is smooth enough.

Exercise 1.5. Compute the same quantities of the previous exercises but now for the curve
r(θ)(cos θ, sin θ)

Exercise 1.6. Consider γ : [a, b] → R2 a parametrized curve with regular parametrization
and let ϕ to be a (strictly) monotone function. Prove that γ ◦ ϕ represent the same curve.
What happens with the geometric quantities if ϕ is decreasing?. Give and example of this.
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2 Lecture II

In this class we introduce the curve shortening flow and some examples. Then, we study the
maximum principle and how to apply it in order to obtain information of the flow.

2.1 What is curvature? (Continuation)

Recall that

d

dt
L(γ̃)(t)

∣∣∣∣
t=0

= −
ˆ L(γ)

0

κϕds.

If we set ϕ = κ, then this is decreasing (and it is the fastest decreasing direction).

Definition 2.1. The curve shortening flow (CSF) is the deformation of a curve in the normal
direction with a speed equal to its curvature. More precisely, we consider γ : I× [0,∞)→ R2

satisfying

dγ

dt
= κν = γss,

where κ is the signed curvature.

Remark. For each t, γ(·, t) is a curve.

Example 2.2. Assume that r(t)(cos θ, sin θ) = γ(θ, t) is a solution to the curve shortening
flow. In this example, ν = −(cos θ, sin θ) and κ = 1

r
. Now, notice that

dγ

dt
=
dr

dt
(cos θ, sin θ).

Then,

dγ

dt
· ν = −dr

dt
,

but dγ
dt
· ν = κ = 1

r
. Thus,

r(t)
dr

dt
= −1,

or, equivalently,

1

2

dr2

dt
= −1.

Integrating we obtain

r(t) =
√
r2(0)− 2t.

Geometrically, we see that the curves, which are concentric circles, shrink to a point as

t→ r2(0)
2

.
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Example 2.3. We look for a solution of the CSF of the form γ(x, t) = (x, u(x) + t). In this
case,

dγ

dt
= (0, 1), and ν =

(
du

dx
,−1

)
√

1 +

(
du

dx

)2
,

which implies
dγ

dt
· ν =

−1√
1 + u2x

.

Now we want to compute γss. For this, notice that from

s =

ˆ x

0

√
1 + u2xdλ,

it follows that
dx

ds
=

1√
1 + u2x

.

Using this last calculation, we obtain

dγ

ds
= (1, ux)

dx

ds
=

(1, ux)√
1 + u2x

,

and from this

d2γ

ds2
=

1√
1 + u2x

(
−uxuxx

(1 + ux)
3
2

,
uxx√
1 + u2x

− u2xuxx

(1 + u2x)
3
2

)
.

Then

d2γ

ds2
· ν =

−uxx
(1 + u2x)

3
2

.
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Since γ is a solution of the CSF, we obtain

−1√
1 + u2x

=
dγ

dt
· ν =

d2γ

ds2
· ν =

−uxx
(1 + u2x)

3
2

,

or equivalently

1 =
uxx

1 + u2x
.

Integrating this expression we obtain

x = arctanux.

and then

du

dx
=

sinx

cosx
= − d

dx
ln(cosx).

From this, we conclude that

u(x) = − ln cos(x) + u(0).

If we choose u(0) = 0 we find another example of solution to the CSF:

(x, t− ln(cosx)), for x ∈
(
−π

2
,
π

2

)
.

This solution is called the grim reaper. Below we give the curves for t = −1, 0 and 1.

Notice that γ(x, t) is the translation of the curve x 7→ (x,− ln(cosx)) along the y−axis.
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2.2 The maximum principle

Now we focus our attention in a very useful tool of differential equations, which we will use
later.

Assume that we have a solution to an ODE of the form

−af ′′ + bf ′ + c(x) = 0, for x ∈ (A,B),

with a > 0 and c > 0.

Theorem 2.4. If f satisfies the previous ODE, then does not have a maximum in the
interior.

Proof. Assume by contradiction that there exists x ∈ (A,B) in which f attains its maximum.
Then, f ′′(x) ≤ 0 and f ′(x) = 0. These conditions and the hypothesis that f solve the ODE
implies that

c(x) ≤ −af ′′ + bf ′ + c(x) = 0,

which is a contradiction since c > 0.

Remark. The same statement is true for the minimum if c < 0.

Theorem 2.5. If f satisfies the same as before but now with c ≥ 0, the same statements
hold.

Proof. Take fε = f + εeLx and compute as follows:

−af ′′ε + bf ′ε = −a(f ′′ + εL2eLx) + b(f ′ + εLeLx)

= −af ′′ + bf ′ + c(x)− c(x) + εeLx(−La2 + Lb)

= −c(x) + εeLx(−L2a+ Lb).

For L large enough, −L2a+ Lb < 0. Therefore, fε satisfies the condition of the previous
theorem and we can conclude that

fε ≤ max{fε(A), fε(B)}.

If we let ε→ 0, we conclude what we wanted.

Exercise. Prove that the minimum is attained at the boundary if c ≤ 0.
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2.3 An application of the maximum principle

Proposition 2.6. Assume that f1 and f2 are defined on [0, 1] and satisfy

−af ′′i + bf ′i + c = 0,

and f1(0) = f2(0), f1(1) = f2(1). Then, f1 ≡ f2.

Proof. Define g := f1 − f2. Notice that

−ag′′ + bg′ = −a(f1 − f2) + b(f1 − f2)
= −af1 + bf1 + c− af2 + bf2 − c = 0.

Also, g(0) = g(1) = 0. From the maximum principle, we have that g ≤ 0 and −g ≤ 0.
Therefore, g ≡ 0, i.e., f1 ≡ f2.

We will be interested in equations of the form

−afxx + bfx + c = ft.

Following the preceding ideas, we can define

f̃(t) = max
x∈[0,1]

f(x, t).

If f̃ is regular enough, we would have

c ≤ (f̃)t (or f̃ = f(1, t) or f̃ = f(0, t) ).

In particular, if c ≥ 0, f̃ is increasing.
Similarly, we can define

f
˜
(t) = min

x∈[0,1]
f(x, t)

and

(f
˜
)t ≤ c (or f

˜
= f(1, t) or f

˜
= f(0, t) ).

If c ≤ 0, f
˜

is decreasing.

Therefore

max
x,t

f(x, t) = max

{
max
x∈[0,1]

f(x, 0),max
t
{f(0, t), f(1, t)}

}
.
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The set of points where f attains its maximum is called parabolic boundary

2.4 A return to CSF

Theorem 2.7. Assume that (x, u1(x, t)) and (x, u2(x, t)) are solutions of the CSF. Assume
in addition that

1. u1(x, 0) > u2(x, 0) for x ∈ [−1, 1],

2. u1(±1, t) > u2(±1, t).

Then u1(x, t) > u2(x, t) for every x ∈ [−1, 1] and t ∈ [0, T ).

Exercise. Show that

(ui)t =
(ui)xx

1 + (ui)2x
.

Proof. Let vε = u1 − u2 + εt. The conditions 1 and 2 of the hypothesis implies that

1. vε(x, 0) > 0

2. vε(±1, t) > 0.

Assume that there is an x0 ∈ (−1, 1) and a first t0 ∈ (0, T ) such that vε(x0, t0) = 0 (that
is, u2(x0, t0) = u1(x0, t0) + εt0 > u1(x0, t0). Since for t < t0 we have vε(x0, t) > 0, then we
obtain

dvε
dt

(x0, t0) ≤ 0. (*)

Since this is a minimum we have

dvε
dx

= 0 and
d2vε
dx2
≥ 0. (**)
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Also, by the previous exercise

dvε
dt

=
du1
dt
− du2

dt
+ ε =

(u1)xx
1 + (u1)2x

− (u2)xx
1 + (u2)2x

+ ε.

If we use (*) and (**), at (x0, t0) we obtain

0 ≥ dvε
dt

=
(vε)xx

1 + (u1)2x
+ ε > 0,

which is a contradiction. Therefore, vε > 0, i.e., for every ε > 0

u1(x, t) ≥ u2(x, t)− εt.

Finally, we let ε→ 0 to conclude what we wanted.

Theorem 2.8. If γ1(x, t) and γ2(x, t) are two bounded closed curves such that γ1(x, 0) ∩
γ2(x, 0) = ∅, then γ1(x, t) ∩ γ2(x, t) = ∅ while solutions are defined.

Proof. If they touch at some point, we can locally (after rotation and translation) write them
as graphs and then we can apply the previous result.

Corollary 2.9. If γ(x, t) is a compact (bounded) curve, the solution can exists at most for
a finite time.

2.5 Exercises

Exercise 2.1. Assume that γ satisfies the CSF and φ(x, t) is an increasing function en x
for every t. Compute the equation that satisfies γ(φ(x, t), t).

Exercise 2.2. Prove that if

−af ′′ + bf ′ + cf = 0 in (0, 1),

and a > 0, c > 0, f(0) > 0, f(1) > 0, then f ≥ 0 in (0, 1).
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3 Lecture III

Theorem 3.1 (Main Theorem). Every compact, embedded, C2 curve converges to a point
in finite time.

This foundational theorem was first proved in the mid 80’s by a combination of results
due to Gage & Hamilton and Grayson, see [GH86] and [Gra87]. A few alternative proofs
have been published later. Here we will analyze one provided by G. Huisken in [Hui98].

In order to reach our objective, we first check the following simpler result:

Theorem 3.2. Let γ : I× [0, T ]→ R2 be an open curve that evolves under curve shortening
flow (in its interior). Let

δ(x, y, t) = |γ(x, t)− γ(y, t)| and `(x, y, t) =

ˆ y

x

|γ′(λ, t)|dλ.

Assume that d
`

attains an infimum in the interior at time t0. Then

d

dt

(
δ

`

)
(x, y, t0) ≥ 0,

whith equality when γ is a straight line.

Remark. In general δ
`
≤ 1, since ` is the shortest distance.

The “isoperimetric quantity” δ
`

gives a quantitative measure of how γ differs from a
straight line.

Remark. For an open curve we need to specify the behavior at the boundary. Two standard
choices to have a well defined problem are the following:

1. To prescribe the points.

2. To prescribe an angle with fixed lines.

Note that if we fix the end points, then

d

dt

(
δ

`
(P,Q, t)

)
= − δ

`2
d`

dt
=

δ

`2

ˆ Q

P

k2ds ≥ 0,

with equality only for a straight line.
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Sketch of the proof. Assume that at t0 the infimum is attained at x0, y0.

Without loss of generality, we can assume that γ(x, t0) is parametrized in arc–length
parameter, that is, x ∈ [0, L(t0)]. To show that

d

dt

(
δ

`

)
=
δ′`− `′δ

`2
≥ 0,

we first consider the following one variable function:

f1(λ) =
δ

`
(x0 + λ, y0, t0).

Since f1 has a minimum at λ = 0, we obtain

df1
dλ

(x0, y0, t0) = 0.

In order to understand what this means, we will compute this derivative. First, we will
compute their ingredients: since γ(·, t0) is parametrized in arc-length parameter,

`(x0 + λ, y0, t0) =

ˆ y0

x0+λ

1dα = y0 − x0 − λ.

This implies that d`
dλ

= −1. Also, since

δ2(x0 + λ, y0 + λ) = |γ(x0 + λ, t0)− γ(y0, t0)|2,

then
dδ2

dλ

∣∣∣∣
λ=0

= 2δ
dδ

dλ

∣∣∣∣
λ=0

= 2〈γ(x0, t0)− γ(y0, t0), τ(x0, t0)〉.

Thus,

0 =
df1
dλ

(0) =
` dδ
dλ
− δ d`

dλ

`2

=
dδ
dλ

`
+
δ

`2

=
〈ω, τ(x0, t0)〉

`
+
δ

`2
,
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where ω := γ(x0,t0)−γ(y0,t0)
|γ(x0,t0)−γ(y0,t0)| . In a similar way, if we consider f2(λ) = δ

`
(x0, y0 + λ, t0), we

notice that
df2
dλ

(0) = 0,

and

0 =
df2
dλ

(0) = −〈ω, τ(y0, t0)〉
`

− δ

`2
.

Therefore,
〈ω, τ(x0, t0)〉 = 〈ω, τ(y0, t0)〉.

From here, we separate the proof into two cases.

• Case 1: τ(x0, t0) = τ(y0, t0). Here we consider the function f̃1(λ) = δ
`
(x0+λ, y0+λ, t0).

Note that
df̃1
dλ

(0) = 0 and
d2f̃1
dλ2

(0) ≥ 0.

Similar to the previous computations, using the second order quotient rule we obtain

0 ≤ d2f̃1
dλ2

(0) =
d2δ
dλ2
− 2df̃1

dλ
d`
dλ
− f̃1 d

2`
dλ

`

=
1

`

d2δ

λ2

=
〈ω, κ(x0, t0)ν(x0, t0)− κ(y0, t0)ν(y0, t0)〉

`
+
|τ(x0, t0)− τ(y0, t0)|2

δ`

− 〈ω, τ(x0, t0)− τ(y0, t0)〉
δ2`

dδ

dλ

=
〈ω, κ(x0, t0)ν(x0, t0)− κ(y0, t0)ν(y0, t0)〉

`
.

Now notice that since γ satisfies the CSF, then

dδ

dt
=
〈ω, κ(x0, t0)ν(x0, t0)− κ(y0, t0)ν(y0, t0)〉

`
≥ 0,

and (from the computations of the previous lectures)

d`

dt
= −
ˆ y0

x0

κ2ds.

Therefore,

d

dt

(
δ

`

)
=
δ′`− `′δ

`2
=
〈ω, κ(x0, t0)ν(x0, t0)− κ(y0, t0)ν(y0, t0)〉

`
+
δ

`

ˆ y0

x0

κ2ds ≥ 0.
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• Case 2: τ(x0, t0) 6= τ(y0, t0). In this case, we consider f̃2(λ) = δ
`
(x0 +λ, y0−λ, t0). As

before,
df̃2
dλ

(0) = 0 and
d2f̃2
dλ2

(0) ≥ 0.

Also,

0 =
df̃2
dλ

=
〈ω, τ(x0, t0) + τ(y0, t0)〉

`
+

2δ

`2
,

and

d2f̃2
dλ2

=
〈ω, κ(x0, t0)ν(x0, t0)− κ(y0, t0)ν(y0, t0)〉

`

+
|τ(x0, t0) + τ(y0, t0)|2

d`
− 〈ω, τ(x0, t0) + τ(y0, t0)〉2

d`
.

Let us write τ1 = τ(x0, t0) and τ2 = τ(y0, t0). Then

〈τ1 − τ2, τ1 + τ2〉 = 〈τ1, τ1〉+ 〈τ1, τ2〉 − 2〈τ2, τ1〉+ 〈τ2, τ2〉 = 0,

that is, τ1− τ2 ⊥ τ1 + τ2. Since we also have τ1− τ2⊥ω, we obtain τ1 + τ2//ω and (since
now ω = τ1+τ2

|τ1+τ2|) 〈ω, τ1 + τ2〉2 = |τ1 + τ2|2. Therefore,

0 ≤ d2f̃2
dλ2

=
〈ω, κ(x0, t0)ν(x0, t0)− κ(y0, t0)ν(y0, t0)〉

`
,

and we can conclude as in the previous case.

Finally, note that for the equality necessarily
ˆ y0

x0

κ2ds = 0,

which implies that κ ≡ 0, that is, the curve is a straight line.

Remark. The situation is similar for closed curves, and the picture at the critical values looks
as follows:
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For our Main Theorem a similar idea can be used, but we need to consider a different
“isoperimetric profile”. Instead of δ

`
we use δ

ψ(`)
, were

ψ(`) =
L(t)

π
sin

(
`π

L(t)

)
,

where L(t) is the total length at time t.The computation in this case is similar and we leave
it to the interested reader.

For further study about the CSF and some of its generalizations, we highly recommend
the book [CZ01] and [Zhu02].
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