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Coding and decoding with the generator matrix

If B = {v1, . . . , vk} is a basis of an [n, k] code C, we define the generator
matrixG of the code as the matrixGk×n for which the rows are the vectors
vi of the base.

For an [n, k] code C over Fq we can encode using the generator matrix G:

Fk
q −→ Fn

q

u → c = uG

Example: Mariner 9

u = (a1, a2, . . . , a6) −→ c = (c1, c2, . . . , c32)

Example: G =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0



C = {(000000), (100011), (010101), (001110),
(110110), (011011), (101101), (111000)}.
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Coding and decoding with the generator matrix

If G is on standard form, i.e. G = (Ik|A), then decoding is trivial since

u ∈ Fk
q −→ c = uG = (u|uA) ∈ Fn

q −→ u = c|Fkq
∈ Fk

q .

Example: G =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0


C = {(000000), (100011), (010101), (001110),

(110110), (011011), (101101), (111000)}.

How can we detect if a word
has been transmitted with an error?
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Parity check matrix and the dual code

The canonical inner product on Fn
q is defined by

〈a, b〉 =
n∑

i=1

aibi,

for a = (a1, . . . , an) and b = (b1, . . . , bn) in Fn
q .

If C ⊆ Fn
q is a code then

C⊥ = {u ∈ Fn
q : 〈u, c〉 = 0 for all c ∈ C}

is called the dual of C.

The code C is called self-dual if C⊥ = C.

Proposition

If C is an [n, k] code over Fq then C⊥ is an [n, n− k] code over Fq.
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Parity check matrix and the dual code

A generator matrix H of C⊥ is said to be a parity check matrix for C. Clearly
H is an(n− k)× n matrix.

A parity check matrix H ’checks’ whether a vector u ∈ Fn
q is a codeword

or not since
x ∈ C ⇐⇒ HxT = 0.

If the generator matrix G of a code C is in standard form, i.e,

G = (Ik|A)

then a parity check matrix for C is

H = (−AT |In−k)

where In−k is the identity matrix of size n− k.

A matrix H of this form is said to be in standard form as a parity check
matrix (although is not in standard form as a generator matrix of C⊥).
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Example

G =
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C = {(000000), (100011), (010101), (001110),
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Error correction

Definition

If C is an [n, k] code over Fq and H is a parity check matrix for C, then for any
word y ∈ Fn

q the syndrome of y is defined by S(y) = yHT .

y ∈ C if and only if S(y) = 0.

If y 6∈ C then y is corrected as y − e where S(y) = S(e).



Definition

If C is an [n, k] code over Fq and a ∈ Fn
q , the left coset a + C is defined as

a+ C = {a+ x : x ∈ C}.

C ⊂ Fn
q is a vector space

The quotient
Fn
q /C = {a+ C : a ∈ Fn

q }

is a vector space

α(a+ C) = αa+ C (a+ C) + (b+ C) = (a+ b) + C

where α ∈ Fq and a, b ∈ Fn
q ,

|Fn
q /C| = |Fn

q |/|C| = qn/qk = qn−k.



Definition

If C is an [n, k] code over Fq and a ∈ Fn
q , the left coset a + C is defined as

a+ C = {a+ x : x ∈ C}.

C ⊂ Fn
q is a vector space

The quotient
Fn
q /C = {a+ C : a ∈ Fn

q }

is a vector space

α(a+ C) = αa+ C (a+ C) + (b+ C) = (a+ b) + C

where α ∈ Fq and a, b ∈ Fn
q ,

|Fn
q /C| = |Fn

q |/|C| = qn/qk = qn−k.



Definition

If C is an [n, k] code over Fq and a ∈ Fn
q , the left coset a + C is defined as

a+ C = {a+ x : x ∈ C}.

C ⊂ Fn
q is a vector space

The quotient
Fn
q /C = {a+ C : a ∈ Fn

q }

is a vector space

α(a+ C) = αa+ C (a+ C) + (b+ C) = (a+ b) + C

where α ∈ Fq and a, b ∈ Fn
q ,

|Fn
q /C| = |Fn

q |/|C| = qn/qk = qn−k.



Theorem

Every word of Fn
q belongs to exactly one left coset of C. Two cosets are either

disjoint or identical.

There are qn−k disjoint cosets (with qk words).

The coset leader is any word in the coset of minimum weight.

To perform error correction we can construct a table with all the coset
leaders and their syndromes.



Example

G =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

 H =

 0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1



C = {(000000), (100011), (010101), (001110),
(110110), (011011), (101101), (111000)}.



Example

C = {(000000), (100011), (010101), (001110),
(110110), (011011), (101101), (111000)}.

e0 = (000000)S(e0) = (000) e4 = (000100)S(e4) = (100)

e1 = (100000)S(e1) = (011) e5 = (000010)S(e5) = (010)

e2 = (010000)S(e2) = (101) e6 = (000001)S(e6) = (001)

e3 = (001000)S(e3) = (110) e7 = (100100)S(e7) = (111)

HT =


0 1 1
1 0 1
1 1 0
1 0 0
0 1 0
0 0 1


x = (010101)→ y = (010001)

x = (010101)→ y = (011101)

x = (011011)→ y = (011111)

x = (110110)→ y = (110010)

2 errores: x = (110110)→ y = (110101)





Theorem

Let C be an [n, k, d] code and let H be a parity check matrix for C. Then

d = min{r : there are r linearly dependent columns in H}.

In other words, H has d linearly dependent columns but any set of d − 1
columns are linearly independents.

Proof Let H1, H2, ..., Hn the columns of H. Then

c = (c1, . . . , cn) ∈ C ⇐⇒ HcT = 0⇐⇒ cHT = 0⇐⇒ c1H
1+ · · ·+cnHn = 0.

If c ∈ C is a word of minimum weight d we have that H has d linearly depen-
dent columns, but any set of d − 1 or less columns are linearly independent,
because in that case we would have non-zero words in C with weight less than
d. Reciprocally, if there are r columns linearly dependent then there are words
of weight r but the minimum distance is the smallest of these weights.
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Hadamard Code

A Hadamard code is an [2r, r, 2r−1] linear code over a binary alphabet which
can correct many errors. The generator matrix G can be constructed in the
following way: the ith column of G is the binary representation of i for i =
0, . . . , 2r − 1

Example: the [8, 3, 4] Hadamard code has generator matrix:

G =

 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


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Punctured Hadamard code

The punctured Hadamard code is a [2r−1, r, 2r−2] linear code over the binary
alphabet. The generator matrix for this code is obtained from the generator
matrix of a Hadamard code without the columns starting with 0.

Example: r = 3:

G[8,3,4] =

 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 → G[4,3,2] =

 1 1 1 1
0 0 1 1
0 1 0 1



C = {(0000), (0101), (0011), (1111), (0110), (1010), (1100), (1001)}
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alphabet. The generator matrix for this code is obtained from the generator
matrix of a Hadamard code without the columns starting with 0.

Example: r = 3:

G[8,3,4] =

 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 → G[4,3,2] =

 1 1 1 1
0 0 1 1
0 1 0 1



C = {(0000), (0101), (0011), (1111), (0110), (1010), (1100), (1001)}



Reed-Muller code

For 0 ≤ r ≤ m the Reed-Muller denoted by R(r,m) is an [n, k, d] binary
code with

n = 2m, k =

r∑
i=0

(
m

i

)
, d = 2m−r.

The generator matrix for R(r,m) is

Gr,m =

(
Gr,m−1 Gr,m−1

0 Gr−1,m−1

)
si 0 < r < m

G0,m = (1 1 · · · 1)︸ ︷︷ ︸
m+1

Gm,m =

(
Gm−1,m

0 · · · 0 1

)





Challenge

Write the generator matrix of the

[32, 6, 16]

punctured Hadamard code used by Mariner 9.



¿Preguntas?

Marı́a Chara
charamaria@gmail.com

Saraı́ Hernández-Torres
sarai.h@campus.technion.ac.il


