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Mariner 9, 1971

Figure: https://en.wikipedia.org/wiki/Mariner 9
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Figure: https://en.wikipedia.org/wiki/Mariner 9



Mariner 9 image of the central caldera of the Martian volcano, Olympus
Mons.

Figure: https://nssdc.gsfc.nasa.gov/imgcat/html/object page/m09 mtvs4265 52.html



Patricia “Patsy” Conklin, an employee in the Bioscience and
Planetology Section at NASA’s Jet Propulsion Laboratory assembles
Mariner 9 photos into large mosaics.

Figure: https://www.upi.com/Top News/2020/05/30/On-This-Day-Mariner-9-launched-toward-
Mars/4991590342141/



Example: Transmission of pictures from NASA spaceships

Mariner 4 (1964/1965) performed the first successful flyby of the planet Mars,
returning the first close-up pictures of the Martian surface. It captured the first
images of another planet ever returned from deep space, taking 22 complete
pictures of Mars.

Each picture was partitioned into 200 × 200 pixels and each image pixel was
represented as a six-bit binary value, which had 64 possible grayscale levels
from white (000000) to black (111111).

The total number of binary digits per picture was 240000. Each individual
photograph took approximately six hours to be transmitted back to Earth.

All images were stored onto a on-board magnetic tape recorder and then sent
to our planet. All images were transmitted twice to ensure no data was missing
or corrupt.
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Mariner 4, 1964 1965

Figure: Photo:NASA
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A (n,M)-code C over is a subset of with M elements.
is called the alfabet

.

The elements of Fn
q are called words and the elements of C are called

code words.

For a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Fn
q let

d(a, b) = |{i : 1 ≤ i ≤ n, ai 6= bi}|.

this function d is called the Hamming distance on Fn
q .

The weight of an element a ∈ Fn
q is defined by

w(a) := d(a, 0) = |{i : 1 ≤ i ≤ n, ai 6= 0}|.

For example
d((00000), (01010)) = 2

and
w((00000)) = 0 y w((01010)) = 2.



A (n,M)-code C over a finite set A is a subset of An with M elements.
A is called the alfabet.

The elements of Fn
q are called words and the elements of C are called

code words.

For a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Fn
q let

d(a, b) = |{i : 1 ≤ i ≤ n, ai 6= bi}|.

this function d is called the Hamming distance on Fn
q .

The weight of an element a ∈ Fn
q is defined by

w(a) := d(a, 0) = |{i : 1 ≤ i ≤ n, ai 6= 0}|.

For example
d((00000), (01010)) = 2

and
w((00000)) = 0 y w((01010)) = 2.



A (n,M)-code C over a finite field Fq is a subset of Fn
q with M elements.

Fq is called the alfabet.

The elements of Fn
q are called words and the elements of C are called

code words.

For a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Fn
q let

d(a, b) = |{i : 1 ≤ i ≤ n, ai 6= bi}|.

this function d is called the Hamming distance on Fn
q .

The weight of an element a ∈ Fn
q is defined by

w(a) := d(a, 0) = |{i : 1 ≤ i ≤ n, ai 6= 0}|.

For example
d((00000), (01010)) = 2

and
w((00000)) = 0 y w((01010)) = 2.



A (n,M)-code C over a finite field Fq is a subset of Fn
q with M elements.

Fq is called the alfabet.
The elements of Fn

q are called words and the elements of C are called
code words.

For a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Fn
q let

d(a, b) = |{i : 1 ≤ i ≤ n, ai 6= bi}|.

this function d is called the Hamming distance on Fn
q .

The weight of an element a ∈ Fn
q is defined by

w(a) := d(a, 0) = |{i : 1 ≤ i ≤ n, ai 6= 0}|.

For example
d((00000), (01010)) = 2

and
w((00000)) = 0 y w((01010)) = 2.



A (n,M)-code C over a finite field Fq is a subset of Fn
q with M elements.

Fq is called the alfabet.
The elements of Fn

q are called words and the elements of C are called
code words.

For a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Fn
q let

d(a, b) = |{i : 1 ≤ i ≤ n, ai 6= bi}|.

this function d is called the Hamming distance on Fn
q .

The weight of an element a ∈ Fn
q is defined by

w(a) := d(a, 0) = |{i : 1 ≤ i ≤ n, ai 6= 0}|.

For example
d((00000), (01010)) = 2

and
w((00000)) = 0 y w((01010)) = 2.



A (n,M)-code C over a finite field Fq is a subset of Fn
q with M elements.

Fq is called the alfabet.
The elements of Fn

q are called words and the elements of C are called
code words.

For a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Fn
q let

d(a, b) = |{i : 1 ≤ i ≤ n, ai 6= bi}|.

this function d is called the Hamming distance on Fn
q .

The weight of an element a ∈ Fn
q is defined by

w(a) := d(a, 0) = |{i : 1 ≤ i ≤ n, ai 6= 0}|.

For example
d((00000), (01010)) = 2

and
w((00000)) = 0 y w((01010)) = 2.



A (n,M)-code C over a finite field Fq is a subset of Fn
q with M elements.

Fq is called the alfabet.
The elements of Fn

q are called words and the elements of C are called
code words.

For a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Fn
q let

d(a, b) = |{i : 1 ≤ i ≤ n, ai 6= bi}|.

this function d is called the Hamming distance on Fn
q .

The weight of an element a ∈ Fn
q is defined by

w(a) := d(a, 0) = |{i : 1 ≤ i ≤ n, ai 6= 0}|.

For example
d((00000), (01010)) = 2

and
w((00000)) = 0 y w((01010)) = 2.



A (n,M)-code C over a finite field Fq is a subset of Fn
q with M elements.

Fq is called the alfabet.
The elements of Fn

q are called words and the elements of C are called
code words.

For a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Fn
q let

d(a, b) = |{i : 1 ≤ i ≤ n, ai 6= bi}|.

this function d is called the Hamming distance on Fn
q .

The weight of an element a ∈ Fn
q is defined by

w(a) := d(a, 0) = |{i : 1 ≤ i ≤ n, ai 6= 0}|.

Obs.: The Hamming distance is a metric on Fn
q .



The minimum distance d(C) of a code C is the minimum distance be-
tween distinct codewords, e. i.,

d(C) = min{d(x, y) : x ∈ C, y ∈ C, x 6= y}.

An (n,M, d)-code is a code C with M words of length n and minimum
distance d.

For example, the spacecraft Mariner 9 used an (32, 64, 16) binary code.

C = {(0000000), (0001111), (0010101), (0011010), (0100110), (0101001),
(0110011), (0111100), (1000011), (1001100), (1010110), (1011001),
(1100101), (1101010), (1110000), (1111111)}.
is an (7, 16, 3) binary code.
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A measure for the error-correcting capability of a linear code is the
minimum distance

Theorem

A code C with minimum distance d can:

(i) detect up to d− 1 errors;

(ii) correct up to b d−1
2
c errors.

Proof

(ii) Let t = b d−1
2
c and assume that a codeword x is sent and a vector y is

received with up to t errors. Then d(x, y) ≤ t.

If z is another codeword,
since

d(x, z) ≤ d(x, y) + d(y, z)

then
d(y, z) ≥ d(x, z)− d(x, y) ≥ d− t > t

and therefore x is the closest codeword to y.
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Nearest Neighbor Decoding

To decode y as the codeword x such that d(y, x) is the minimum possible we
have to assure that:

each symbol has the same probability p of been transmitted with an error;

if a symbol is received with an error, all of the remaining symbols have
the same probability to appear as the error.



Linear codes

A linear code C (over the aphabet Fq) is a linear subspace of Fn
q .

We say tha n is the length of the code and dim C is the dimension of the
code (as vectorial subspace over Fq).

An [n, k]−code C is a linear code of length n and dimension k. If d is the
minimum distance of C we say that C is am [n, k, d]−code.

Each codeword of C has k information symbols and n−k redundant sym-
bols: k/n is called the information rate of the code C.

One of the main goals of the theory of error correcting codes is to con-
struct good codes, i.e., codes with good parameters, maximizing k/n
and d/n.
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Proposition (Singleton Bound)

For an [n, k, d] code C holds

k + d ≤ n+ 1.

Codes with k + d = n + 1 are in some sense optimal; such codes are
called MDS codes (maximum distance separables).

In general is hard to obtain non trivial lower bounds for a minimum dis-
tance of a given code or a given class of codes.
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we obtain
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Generator matrix of a code C

If B = {v1, . . . , vk} is a basis of an [n, k] code C, we define the generator
matrix G of the code as the matrix Gk×n for which the rows are the vectors
vi of the base.

G depend on the basis.

Two equivalent matrixes define the same code.

We shall say that G is in standard form (often called reduced echelon
form) if

G = (Ik|A)

where Ik is the k × k identity matrix and A is k × n− k.
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Coding and decoding

For an [n, k] code C over Fq we can encode using the generator matrix G:

Fk
q −→ Fn

q

u → c = uG

Example: Mariner 9

u = (a1, a2, . . . , a6) −→ c = (c1, c2, . . . , c32)

The [4, 2] binary code C generating by the matrix

G =

(
1 0 1 1
0 1 0 1

)
.

Then C = {(0000), (1011), (0101), (1110)}.

If G is on standard form then decoding is trivial since

u ∈ Fk
q −→ c = uG = (u|uA) ∈ Fn

q −→ u = c|Fkq
∈ Fk

q .
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