An introduction to error correcting codes

Mathematics sin fronteras

María Chara

Universidad Nacional del Litoral

May 12, 2021

Mariner 9, 1971

Mariner 9

From Wikipedia, the free encyclopedia

Mariner 9 (Mariner Mars '71 / Mariner-I) was a robotic space probe that contributed greatly to the exploration of Mars and was part of the NASA Mariner program. Mariner 9 was launched toward Mars on May 30, $1971^{[1][2]}$ from LC-36B at Cape Canaveral Air Force Station, Florida, and reached the planet on November 14 of the same year, ${ }^{[1][2]}$ becoming the first spacecraft to orbit another planet ${ }^{[3]}$ - only narrowly beating the Soviet probes Mars 2 (launched May 19) and Mars 3 (launched May 28), which both arrived at Mars only weeks later.

After the occurrence of dust storms on the planet for several months following its arrival, the orbiter managed to send back clear pictures of the surface. Mariner 9 successfully returned 7,329 images over the course of its mission, which concluded in October 1972. ${ }^{[4]}$

Contents [hide]

1 Objectives
2 Instruments
3 Achievements
4 Construction
5 Error-Correction Codes achievements
6 Present location
7 See also
8 References
9 External links

Objectives [edit]

The Mariner 9 spacecraft
Mission type Mars orbiter
Operator NASA/JPL
COSPAR ID 1971-051A둥
SATCAT no. 526
Mission duration 1 year, 4 months, 27 days

Spacecraft properties

Manufacturer Jet Propulsion Laboratory
Launch mass 997.9 kilograms (2,200 lb)

Figure: https://en.wikipedia.org/wiki/Mariner_9

Mariner 9, 1971

Construction

The ultraviolet spectrometer aboard Mariner 9 was constructed by the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder, Colorado. The ultraviolet spectrometer team was led by Professor Charles Barth.

The Infrared Interferometer Spectrometer (IRIS) team was led by Dr. Rudolf A. Hanel from NASA Goddard Spaceflight Center (GSFC). The IRIS instrument was built by Texas Instruments, Dallas, Texas.
The Infrared Radiometer (IRR) team was led by Professor Gerald Neugebauer from the California Institute of Technology (Caltech).

Error-Correction Codes achievements [edit]

To control for errors in the reception of the grayscale image data sent by Mariner 9 (caused by a low signal-to-noise ratio), the data had to be encoded before transmission using a so-called forward error-correcting code (FEC). Without FEC, noise would have made up roughly a quarter of a received

A schematic of Mariner 9, showing the吅 major components and features image, while the FEC encoded the data in a redundant way which allowed for the reconstruction of most of the sent image data at reception.

Figure: https://en.wikipedia.org/wiki/Mariner_9

Mariner 9 image of the central caldera of the Martian volcano, Olympus Mons.

Figure: https://nssdc.gsfc.nasa.gov/imgcat/html/object_page/m09_mtvs4265_52.html
FIQ UNL •FACULTAD DE INGENIERÍA QUÍMICA

Patricia "Patsy" Conklin, an employee in the Bioscience and Planetology Section at NASA's Jet Propulsion Laboratory assembles Mariner 9 photos into large mosaics.

Figure: https://www.upi.com/Top_News/2020/05/30/On-This-Day-Mariner-9-launched-toward-
FIQ Mars/4991590342141 $\begin{aligned} & \text { UNL.FACULTAD DE } \\ & \text { INGENIERÍAQUIMICA }\end{aligned}$

Example: Transmission of pictures from NASA spaceships

UNL •FACULTAD DE INGENIERÍA QUÍMICA

Example: Transmission of pictures from NASA spaceships

Mariner 4 (1964/1965) performed the first successful flyby of the planet Mars, returning the first close-up pictures of the Martian surface. It captured the first images of another planet ever returned from deep space, taking 22 complete pictures of Mars.

Example: Transmission of pictures from NASA spaceships

Mariner 4 (1964/1965) performed the first successful flyby of the planet Mars, returning the first close-up pictures of the Martian surface. It captured the first images of another planet ever returned from deep space, taking 22 complete pictures of Mars.

Each picture was partitioned into 200×200 pixels and each image pixel was represented as a six-bit binary value, which had 64 possible grayscale levels from white (000000) to black (111111).

Example: Transmission of pictures from NASA spaceships

Mariner 4 (1964/1965) performed the first successful flyby of the planet Mars, returning the first close-up pictures of the Martian surface. It captured the first images of another planet ever returned from deep space, taking 22 complete pictures of Mars.

Each picture was partitioned into 200×200 pixels and each image pixel was represented as a six-bit binary value, which had 64 possible grayscale levels from white (000000) to black (111111).

The total number of binary digits per picture was 240000 . Each individual photograph took approximately six hours to be transmitted back to Earth.

Example: Transmission of pictures from NASA spaceships

Mariner 4 (1964/1965) performed the first successful flyby of the planet Mars, returning the first close-up pictures of the Martian surface. It captured the first images of another planet ever returned from deep space, taking 22 complete pictures of Mars.

Each picture was partitioned into 200×200 pixels and each image pixel was represented as a six-bit binary value, which had 64 possible grayscale levels from white (000000) to black (111111).

The total number of binary digits per picture was 240000 . Each individual photograph took approximately six hours to be transmitted back to Earth.

All images were stored onto a on-board magnetic tape recorder and then sent to our planet. All images were transmitted twice to ensure no data was missing or corrupt.

FIQ

UNL •FACULTAD DE INGENIERÍA QUÍMICA

Figure: Photo:NASA

How can we do this?

UNL •FACULTAD DE INGENIERÍA QUÍMICA

How can we do this?

FIQ
UNL •FACULTAD DE INGENIERÍA QUÍMICA

How can we do this?

How can we do this?

FIQ
UNL •FACULTAD DE
INGENIERÍA QUÍMICA

How can we do this?

FIQ
UNL • FACULTAD DE
INGENIERÍA QUÍMICA

How can we do this?

FIQ
UNL •FACULTAD DE INGENIERÍA QUÍMICA

FIQ
UNL •FACULTAD DE INGENIERÍA QUÍMICA

FIQ
UNL • FACULTAD DE INGENIERÍA QUÍMICA

Example: $\mathcal{C}=\{0,1\}$

UNL • FACULTAD DE INGENIERÍA QUÍMICA

Example: $\mathcal{C}=\{0,1\}$

Message
'white'
or 'black'

Example: $\mathcal{C}=\{0,1\}$

Message 'white' or 'black'

Example: $\mathcal{C}=\{0,1\}$

```
Message
    'white'
or 'black'
```


Encoder
 'white' $=0$
 'black' $=1$

Example: $\mathcal{C}=\{0,1\}$

```
Message
    'white'
or 'black'
```


Encoder
 'white'=0
 'black' $=1$

Example: $\mathcal{C}=\{0,1\}$

```
```

Message

```
```

Message
'white'
'white'
or 'black'

```
```

or 'black'

```
```


Encoder
 'white'=0
 'black'=1

Example: $\mathcal{C}=\{0,1\}$

```
Message
    'white'
or 'black'
```


Encoder
 'white'=0
 'black' $=1$

Example: $\mathcal{C}=\{0,1\}$

```
Message
    'white'
or 'black'
```


Encoder
 'white'=0
 'black' $=1$

Example: $\mathcal{C}=\{0,1\}$

Example: $\mathcal{C}=\{00,11\}$

UNL • FACULTAD DE INGENIERÍA QUÍMICA

Example: $\mathcal{C}=\{00,11\}$

Message
'white'
or 'black'

Example: $\mathcal{C}=\{00,11\}$

Message
'white'
or 'black'

Example: $\mathcal{C}=\{00,11\}$

```
Message
    'white'
or 'black'
```

Encoder
'white' $=00$
'black'=11

Example: $\mathcal{C}=\{00,11\}$

```
Message
    'white'
or 'black'
```


Encoder 'white'=00
 'black'=11

Example: $\mathcal{C}=\{00,11\}$

```
Message
    'white'
or 'black'
```

Message 'white'
or 'black'

Encoder
 'white' $=00$
 'black'=11

Example: $\mathcal{C}=\{00,11\}$

```
Message
    'white'
or 'black'
```


Encoder 'white' $=00$
 'black'=11

noise

channel
$\rightsquigarrow 01$

Example: $\mathcal{C}=\{00,11\}$

```
Message
    'white'
or 'black'
```


Encoder 'white' $=00$
 'black'=11

noise
channel
$\rightsquigarrow 01$

01

Example: $\mathcal{C}=\{00,11\}$

Example: $\mathcal{C}=\{000,111\}$

Example: $\mathcal{C}=\{000,111\}$

Message
'white'
or 'black'

Example: $\mathcal{C}=\{000,111\}$

Message 'white' or 'black'

Example: $\mathcal{C}=\{000,111\}$

Message 'white' or 'black'

Encoder 'white'=000
'black'=111

Example: $\mathcal{C}=\{000,111\}$

```
Message
    'white'
or 'black'
```


Encoder 'white'=000
 'black' $=111$

111

Example: $\mathcal{C}=\{000,111\}$

```
Message
    'white'
or 'black'
```

Message or 'black'

Encoder
 'white'=000
 'black'=111

Example: $\mathcal{C}=\{000,111\}$

Example: $\mathcal{C}=\{000,111\}$

Example: $\mathcal{C}=\{000,111\}$

- A (n, M)-code \mathcal{C} over a finite set \mathcal{A} is a subset of \mathcal{A}^{n} with M elements. \mathcal{A} is called the alfabet.
- A (n, M)-code \mathcal{C} over a finite field \mathbb{F}_{q} is a subset of \mathbb{F}_{q}^{n} with M elements. \mathbb{F}_{q} is called the alfabet.
- A (n, M)-code \mathcal{C} over a finite field \mathbb{F}_{q} is a subset of \mathbb{F}_{q}^{n} with M elements. \mathbb{F}_{q} is called the alfabet.
■ The elements of \mathbb{F}_{q}^{n} are called words and the elements of \mathcal{C} are called code words.
- A (n, M)-code \mathcal{C} over a finite field \mathbb{F}_{q} is a subset of \mathbb{F}_{q}^{n} with M elements. \mathbb{F}_{q} is called the alfabet.
■ The elements of \mathbb{F}_{q}^{n} are called words and the elements of \mathcal{C} are called code words.
■ For $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{F}_{q}^{n}$ let

$$
d(a, b)=\left|\left\{i: 1 \leq i \leq n, a_{i} \neq b_{i}\right\}\right| .
$$

this function d is called the Hamming distance on \mathbb{F}_{q}^{n}.

- A (n, M)-code \mathcal{C} over a finite field \mathbb{F}_{q} is a subset of \mathbb{F}_{q}^{n} with M elements. \mathbb{F}_{q} is called the alfabet.
■ The elements of \mathbb{F}_{q}^{n} are called words and the elements of \mathcal{C} are called code words.
■ For $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{F}_{q}^{n}$ let

$$
d(a, b)=\left|\left\{i: 1 \leq i \leq n, a_{i} \neq b_{i}\right\}\right| .
$$

this function d is called the Hamming distance on \mathbb{F}_{q}^{n}.
■ The weight of an element $a \in \mathbb{F}_{q}^{n}$ is defined by

$$
w(a):=d(a, 0)=\left|\left\{i: 1 \leq i \leq n, a_{i} \neq 0\right\}\right| .
$$

- A (n, M)-code \mathcal{C} over a finite field \mathbb{F}_{q} is a subset of \mathbb{F}_{q}^{n} with M elements. \mathbb{F}_{q} is called the alfabet.
■ The elements of \mathbb{F}_{q}^{n} are called words and the elements of \mathcal{C} are called code words.
\square For $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{F}_{q}^{n}$ let

$$
d(a, b)=\left|\left\{i: 1 \leq i \leq n, a_{i} \neq b_{i}\right\}\right| .
$$

this function d is called the Hamming distance on \mathbb{F}_{q}^{n}.
■ The weight of an element $a \in \mathbb{F}_{q}^{n}$ is defined by

$$
w(a):=d(a, 0)=\left|\left\{i: 1 \leq i \leq n, a_{i} \neq 0\right\}\right|
$$

■ For example

$$
d((00000),(01010))=2
$$

and

$$
w((00000))=0 \quad \text { y } \quad w((01010))=2 .
$$

- A (n, M)-code \mathcal{C} over a finite field \mathbb{F}_{q} is a subset of \mathbb{F}_{q}^{n} with M elements. \mathbb{F}_{q} is called the alfabet.
■ The elements of \mathbb{F}_{q}^{n} are called words and the elements of \mathcal{C} are called code words.
\square For $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{F}_{q}^{n}$ let

$$
d(a, b)=\left|\left\{i: 1 \leq i \leq n, a_{i} \neq b_{i}\right\}\right| .
$$

this function d is called the Hamming distance on \mathbb{F}_{q}^{n}.
■ The weight of an element $a \in \mathbb{F}_{q}^{n}$ is defined by

$$
w(a):=d(a, 0)=\left|\left\{i: 1 \leq i \leq n, a_{i} \neq 0\right\}\right|
$$

Obs.: The Hamming distance is a metric on \mathbb{F}_{q}^{n}.

- The minimum distance $d(\mathcal{C})$ of a code \mathcal{C} is the minimum distance between distinct codewords, e. i.,

$$
d(\mathcal{C})=\min \{d(x, y): x \in \mathcal{C}, y \in \mathcal{C}, x \neq y\} .
$$

- The minimum distance $d(\mathcal{C})$ of a code \mathcal{C} is the minimum distance between distinct codewords, e. i.,

$$
d(\mathcal{C})=\min \{d(x, y): x \in \mathcal{C}, y \in \mathcal{C}, x \neq y\}
$$

- An (n, M, d)-code is a code \mathcal{C} with M words of length n and minimum distance d.
- The minimum distance $d(\mathcal{C})$ of a code \mathcal{C} is the minimum distance between distinct codewords, e. i.,

$$
d(\mathcal{C})=\min \{d(x, y): x \in \mathcal{C}, y \in \mathcal{C}, x \neq y\} .
$$

- An (n, M, d)-code is a code \mathcal{C} with M words of length n and minimum distance d.

■ For example, the spacecraft Mariner 9 used an $(32,64,16)$ binary code.

- The minimum distance $d(\mathcal{C})$ of a code \mathcal{C} is the minimum distance between distinct codewords, e. i.,

$$
d(\mathcal{C})=\min \{d(x, y): x \in \mathcal{C}, y \in \mathcal{C}, x \neq y\} .
$$

- An (n, M, d)-code is a code \mathcal{C} with M words of length n and minimum distance d.

■ For example, the spacecraft Mariner 9 used an $(32,64,16)$ binary code.

■ $C=\{(0000000),(0001111),(0010101),(0011010),(0100110),(0101001)$, (0110011), (0111100), (1000011), (1001100), (1010110), (1011001), (1100101), (1101010), (1110000), (1111111)\}. is an $(7,16,3)$ binary code.

A measure for the error-correcting capability of a linear code is the minimum distance

FIQ

A measure for the error-correcting capability of a linear code is the minimum distance

Theorem

A code \mathcal{C} with minimum distance d can:
(i) detect up to $d-1$ errors;
(ii) correct up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors.

A measure for the error-correcting capability of a linear code is the minimum distance

```
Theorem
A codeC with minimum distance d can:
    (i) detect up to d - 1 errors;
    (ii) correct up to \lfloor\frac{d-1}{2}\rfloor\mathrm{ errors.}
```

Proof

A measure for the error-correcting capability of a linear code is the minimum distance

Theorem

A code \mathcal{C} with minimum distance d can:
(i) detect up to $d-1$ errors;
(ii) correct up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors.

Proof

(i) Assume that a codeword x is sent and a vector y is received with up to $d-1$ errors. Then y can not be a codeword because the minimum distance of \mathcal{C} is d and

$$
d(x, y) \leq d-1<d(\mathcal{C})
$$

Thus, the transmission errors has been detected.

A measure for the error-correcting capability of a linear code is the minimum distance

Theorem

A code \mathcal{C} with minimum distance d can:
(i) detect up to $d-1$ errors;
(ii) correct up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors.

Proof
(ii) Let $t=\left\lfloor\frac{d-1}{2}\right\rfloor$ and assume that a codeword x is sent and a vector y is received with up to t errors. Then $d(x, y) \leq t$.

A measure for the error-correcting capability of a linear code is the minimum distance

Theorem

A code \mathcal{C} with minimum distance d can:
(i) detect up to $d-1$ errors;
(ii) correct up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors.

Proof

(ii) Let $t=\left\lfloor\frac{d-1}{2}\right\rfloor$ and assume that a codeword x is sent and a vector y is received with up to t errors. Then $d(x, y) \leq t$. If z is another codeword, since

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

then

$$
d(y, z) \geq d(x, z)-d(x, y) \geq d-t>t
$$

and therefore x is the closest codeword to y.

Nearest Neighbor Decoding

To decode y as the codeword x such that $d(y, x)$ is the minimum possible we have to assure that:

■ each symbol has the same probability p of been transmitted with an error;

■ if a symbol is received with an error, all of the remaining symbols have the same probability to appear as the error.

Linear codes

UNL. FACULTAD DE INGENIERÍA QUÍMICA

Linear codes

■ A linear code \mathcal{C} (over the aphabet \mathbb{F}_{q}) is a linear subspace of \mathbb{F}_{q}^{n}.

Linear codes

- A linear code \mathcal{C} (over the aphabet \mathbb{F}_{q}) is a linear subspace of \mathbb{F}_{q}^{n}.
- We say tha n is the length of the code and $\operatorname{dim} \mathcal{C}$ is the dimension of the code (as vectorial subspace over \mathbb{F}_{q}).

Linear codes

- A linear code \mathcal{C} (over the aphabet \mathbb{F}_{q}) is a linear subspace of \mathbb{F}_{q}^{n}.
- We say tha n is the length of the code and $\operatorname{dim} \mathcal{C}$ is the dimension of the code (as vectorial subspace over \mathbb{F}_{q}).

■ An $[n, k]$-code \mathcal{C} is a linear code of length n and dimension k.

Linear codes

- A linear code \mathcal{C} (over the aphabet \mathbb{F}_{q}) is a linear subspace of \mathbb{F}_{q}^{n}.
- We say tha n is the length of the code and $\operatorname{dim} \mathcal{C}$ is the dimension of the code (as vectorial subspace over \mathbb{F}_{q}).

■ An $[n, k]$-code \mathcal{C} is a linear code of length n and dimension k. If d is the minimum distance of \mathcal{C} we say that \mathcal{C} is am $[n, k, d]$-code.

- Each codeword of \mathcal{C} has k information symbols and $n-k$ redundant symbols: k / n is called the information rate of the $\operatorname{code} \mathcal{C}$.

Linear codes

- A linear code \mathcal{C} (over the aphabet \mathbb{F}_{q}) is a linear subspace of \mathbb{F}_{q}^{n}.
- We say tha n is the length of the code and $\operatorname{dim} \mathcal{C}$ is the dimension of the code (as vectorial subspace over \mathbb{F}_{q}).

■ An $[n, k]$-code \mathcal{C} is a linear code of length n and dimension k. If d is the minimum distance of \mathcal{C} we say that \mathcal{C} is am $[n, k, d]$-code.

- Each codeword of \mathcal{C} has k information symbols and $n-k$ redundant symbols: k / n is called the information rate of the $\operatorname{code} \mathcal{C}$.

■ One of the main goals of the theory of error correcting codes is to construct good codes, i.e., codes with good parameters, maximizing k / n and d / n.

Proposition (Singleton Bound)
For an $[n, k, d]$ code \mathcal{C} holds

$$
k+d \leq n+1
$$

Proposition (Singleton Bound)

For an $[n, k, d]$ code \mathcal{C} holds

$$
k+d \leq n+1
$$

- Codes with $k+d=n+1$ are in some sense optimal; such codes are called MDS codes (maximum distance separables).

Proposition (Singleton Bound)

For an $[n, k, d]$ code \mathcal{C} holds

$$
k+d \leq n+1
$$

- Codes with $k+d=n+1$ are in some sense optimal; such codes are called MDS codes (maximum distance separables).
- In general is hard to obtain non trivial lower bounds for a minimum distance of a given code or a given class of codes.

Proposition (Singleton Bound)
For an $[n, k, d]$ code \mathcal{C} holds

$$
k+d \leq n+1
$$

Proposition (Singleton Bound)
For an $[n, k, d]$ code \mathcal{C} holds

$$
k+d \leq n+1
$$

Proof

Proposition (Singleton Bound)

For an $[n, k, d]$ code \mathcal{C} holds

$$
k+d \leq n+1
$$

Proof
■ Consider the linear subspace $E \subset \mathbb{F}_{q}^{n}$ given by

$$
E=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}: a_{i}=0 \text { for all } i \geq d\right\}
$$

Proposition (Singleton Bound)

For an $[n, k, d]$ code \mathcal{C} holds

$$
k+d \leq n+1
$$

Proof

■ Consider the linear subspace $E \subset \mathbb{F}_{q}^{n}$ given by

$$
E=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}: a_{i}=0 \text { for all } i \geq d\right\}
$$

Every $a \in E$ has weight $w(a) \leq d-1$, hence $E \cap \mathcal{C}=\emptyset$.

Proposition (Singleton Bound)

For an $[n, k, d]$ code \mathcal{C} holds

$$
k+d \leq n+1
$$

Proof

■ Consider the linear subspace $E \subset \mathbb{F}_{q}^{n}$ given by

$$
E=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}: a_{i}=0 \text { for all } i \geq d\right\}
$$

Every $a \in E$ has weight $w(a) \leq d-1$, hence $E \cap \mathcal{C}=\emptyset$. As $\operatorname{dim} E=d-1$ we obtain

$$
k+(d-1)=\operatorname{dim} \mathcal{C}+\operatorname{dim} E=\operatorname{dim}(\mathcal{C}+E)+\operatorname{dim}(\mathcal{C} \cap E)=\operatorname{dim}(E+\mathcal{C}) \leq n
$$

Generator matrix of a code \mathcal{C}

Generator matrix of a code \mathcal{C}

■ If $\mathcal{B}=\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of an $[n, k]$ code \mathcal{C}, we define the generator matrix G of the code as the matrix $G_{k \times n}$ for which the rows are the vectors v_{i} of the base.

Generator matrix of a code \mathcal{C}

■ If $\mathcal{B}=\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of an $[n, k]$ code \mathcal{C}, we define the generator matrix G of the code as the matrix $G_{k \times n}$ for which the rows are the vectors v_{i} of the base.

■ G depend on the basis.

Generator matrix of a code \mathcal{C}

■ If $\mathcal{B}=\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of an $[n, k]$ code \mathcal{C}, we define the generator matrix G of the code as the matrix $G_{k \times n}$ for which the rows are the vectors v_{i} of the base.

■ G depend on the basis.

■ Two equivalent matrixes define the same code.

Generator matrix of a code \mathcal{C}

■ If $\mathcal{B}=\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of an $[n, k]$ code \mathcal{C}, we define the generator matrix G of the code as the matrix $G_{k \times n}$ for which the rows are the vectors v_{i} of the base.

- G depend on the basis.

■ Two equivalent matrixes define the same code.
■ We shall say that G is in standard form (often called reduced echelon form) if

$$
G=\left(I_{k} \mid A\right)
$$

where I_{k} is the $k \times k$ identity matrix and A is $k \times n-k$.

Coding and decoding

FIQ
UNL • FACULTAD DE INGENIERÍA QUÍMICA

Coding and decoding

For an $[n, k]$ code \mathcal{C} over \mathbb{F}_{q} we can encode using the generator matrix G :

$$
\begin{array}{ccc}
\mathbb{F}_{q}^{k} & \longrightarrow & \mathbb{F}_{q}^{n} \\
u & \rightarrow & c=u G
\end{array}
$$

Coding and decoding

For an $[n, k]$ code \mathcal{C} over \mathbb{F}_{q} we can encode using the generator matrix G :

$$
\begin{array}{ccc}
\mathbb{F}_{q}^{k} & \longrightarrow & \mathbb{F}_{q}^{n} \\
u & \rightarrow & c=u G
\end{array}
$$

- Example: Mariner 9

$$
u=\left(a_{1}, a_{2}, \ldots, a_{6}\right) \longrightarrow c=\left(c_{1}, c_{2}, \ldots, c_{32}\right)
$$

Coding and decoding

For an $[n, k]$ code \mathcal{C} over \mathbb{F}_{q} we can encode using the generator matrix G :

$$
\begin{array}{rcc}
\mathbb{F}_{q}^{k} & \longrightarrow & \mathbb{F}_{q}^{n} \\
u & \rightarrow & c=u G
\end{array}
$$

- Example: Mariner 9

$$
u=\left(a_{1}, a_{2}, \ldots, a_{6}\right) \longrightarrow c=\left(c_{1}, c_{2}, \ldots, c_{32}\right)
$$

- The $[4,2]$ binary code \mathcal{C} generating by the matrix

$$
G=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right) .
$$

Coding and decoding

For an $[n, k]$ code \mathcal{C} over \mathbb{F}_{q} we can encode using the generator matrix G :

$$
\begin{array}{rcc}
\mathbb{F}_{q}^{k} & \longrightarrow & \mathbb{F}_{q}^{n} \\
u & \rightarrow & c=u G
\end{array}
$$

- Example: Mariner 9

$$
u=\left(a_{1}, a_{2}, \ldots, a_{6}\right) \longrightarrow c=\left(c_{1}, c_{2}, \ldots, c_{32}\right)
$$

- The $[4,2]$ binary code \mathcal{C} generating by the matrix

$$
G=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right) .
$$

Then $\mathcal{C}=\{(0000),(1011),(0101),(1110)\}$.

Coding and decoding

For an $[n, k]$ code \mathcal{C} over \mathbb{F}_{q} we can encode using the generator matrix G :

$$
\begin{array}{rcc}
\mathbb{F}_{q}^{k} & \longrightarrow & \mathbb{F}_{q}^{n} \\
u & \rightarrow & c=u G
\end{array}
$$

- Example: Mariner 9

$$
u=\left(a_{1}, a_{2}, \ldots, a_{6}\right) \longrightarrow c=\left(c_{1}, c_{2}, \ldots, c_{32}\right)
$$

■ The $[4,2]$ binary code \mathcal{C} generating by the matrix

$$
G=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right) .
$$

Then $\mathcal{C}=\{(0000),(1011),(0101),(1110)\}$.
If G is on standard form then decoding is trivial since

$$
u \in \mathbb{F}_{q}^{k} \quad \longrightarrow \quad c=u G=(u \mid u A) \in \mathbb{F}_{q}^{n} \quad \longrightarrow \quad u=c_{\left.\right|_{q} ^{k}} \in \mathbb{F}_{q}^{k}
$$

