The isoperimetric problem

Tatiana Toro

University of Washington

Mathematics Sin Fronteras

The isoperimetric inequality

Theorem: Given a planar figure of area A and perimeter P

 $4\pi A \leq P^2$

Equality occurs if and only if the figure is a disc.

Theorem (Wirtinger inequality): Let $f : \mathbb{R} \to \mathbb{R}$ be a piecewise C^1 periodic function with period 2π (i.e. $f(\theta + 2\pi) = f(\theta)$). Let \overline{f} denote the mean value of f

$$\overline{f} = rac{1}{2\pi} \int_0^{2\pi} f(\theta) \, d\theta.$$

Then

$$\int_0^{2\pi} [f(\theta) - \overline{f}]^2 \, d\theta \leq \int_0^{2\pi} [f'(\theta)]^2 \, d\theta.$$

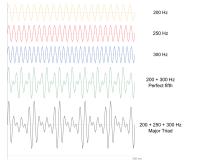
Equality holds if and only if

$$f(\theta) = \overline{f} + a\cos\theta + b\sin\theta$$

for some constants a, b.

Fourier analysis

The central idea of Fourier analysis is to decompose a function into a combination of simpler functions. The simpler functions are the building blocks. Sine and cosine functions are examples of building blocks.



https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Major_triad.svg/1200px-Major_triad.svg.png

Let $f : \mathbb{R} \to \mathbb{R}$ be a piecewise C^1 periodic function with period 2π (i.e. $f(\theta + 2\pi) = f(\theta)$). Can f be expanded as a series of the form

$$f(\theta) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta) ?$$
 (1)

Recall that $e^{ix} = \cos x + i \sin x$. Thus

$$\cos n\theta = rac{e^{in\theta} + e^{-in\theta}}{2}$$
 and $\sin n\theta = rac{e^{in\theta} - e^{-in\theta}}{2i}$.

Thus (1) can be rewritten as

$$f(\theta) = \sum_{-\infty}^{\infty} c_n e^{in\theta}$$
⁽²⁾

where for $n \in \mathbb{N}$

$$c_0 = \frac{1}{2}a_0;$$
 $c_n = \frac{1}{2}(a_n - ib_n);$ $c_{-n} = \frac{1}{2}(a_n + ib_n)$ (3)

equivalently

$$a_0 = 2c_0; \quad a_n = c_n + c_{-n}; \quad b_n = i(c_n - c_{-n}).$$
 (4)

Assume f admits a series expansion of the form (2), how can we compute c_n in terms of f?

Fourier series

Let $f : \mathbb{R} \to \mathbb{R}$ be a piecewise C^1 periodic function with period 2π , the numbers a_n , b_n in (1) and c_n in (2) are called the Fourier coefficients of f. The corresponding series

$$\sum_{-\infty}^{\infty} c_n e^{in\theta} \qquad \text{or} \qquad \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta)$$

is called the Fourier series of f. Here

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\zeta) \cos n\zeta \, d\zeta \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\zeta) \sin n\zeta \, d\zeta \qquad (5)$$

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\zeta) e^{in\zeta} d\zeta$$
(6)

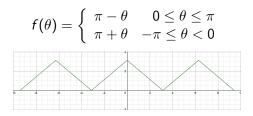
Special cases

f even	$f(-\theta) = f(\theta)$	$a_n = \frac{2}{\pi} \int_0^{\pi} f(\theta) \cos n\theta d\theta$	$b_n = 0$
f odd	f(- heta) = -f(heta)	$a_n = 0$	$b_n = \frac{2}{\pi} \int_0^{\pi} f(\theta) \sin n\theta d\theta$

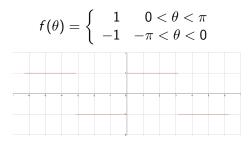
Compute the Fourier series for the following functions:

$$f(heta) = \left\{egin{array}{ccc} \pi - heta & 0 \leq heta \leq \pi \ \pi + heta & -\pi \leq heta < 0 \end{array}
ight. f(heta) = \left\{egin{array}{ccc} 1 & 0 < heta < \pi \ -1 & -\pi < heta < 0 \end{array}
ight.$$

Example 1



Example 2



Does the Fourier series of a periodic function *f* converge to *f*?

For $N \in \mathbb{N}$ let

$$S_N^f(\theta) = \frac{1}{2}a_0 + \sum_{n=1}^N (a_n \cos n\theta + b_n \sin n\theta) = \sum_{-N}^N c_n e^{in\theta}$$
(7)

Theorem: If $f : \mathbb{R} \to \mathbb{R}$ be a piecewise C^1 periodic function with period 2π , and S_N^f is defined as in (7) with a_n , b_n and c_n defined as in (5) and (6), then

$$\lim_{N\to\infty}S_N^f(\theta)=\frac{1}{2}[f(\theta-)+f(\theta+)]$$

for all θ . In particular,

$$\lim_{N\to\infty}S^f_N(\theta)=f(\theta)$$

for every θ at which f is continuous.

Wirtinger inequality

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be a piecewise C^1 periodic function with period 2π ,

$$\overline{f}=\frac{1}{2\pi}\int_0^{2\pi}f(\theta)\,d\theta.$$

Then

$$\int_0^{2\pi} \left[f(\theta) - \overline{f}\right]^2 d\theta \leq \int_0^{2\pi} \left[f'(\theta)\right]^2 d\theta.$$

Equality holds if and only if

$$f(\theta) = \overline{f} + a\cos\theta + b\sin\theta$$

for some constants a, b.

Proof: Let

$$f(\theta) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta)$$

where $a_0 = 2\overline{f}$ and

$$\int_0^{2\pi} [f(\theta) - \overline{f}]^2 d\theta = \int_0^{2\pi} \left[\sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta) \right]^2 d\theta$$
$$= \pi \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

$$f'(\theta) = \sum_{n=1}^{\infty} (-na_n \sin n\theta + nb_n \cos n\theta)$$
$$\int_0^{2\pi} [f'(\theta)]^2 d\theta = \pi \sum_{n=1}^{\infty} n^2 (a_n^2 + b_n^2) \quad (\text{Parseval's equation})$$

$$\int_0^{2\pi} \left[f'(\theta)\right]^2 d\theta - \int_0^{2\pi} \left[f(\theta) - \overline{f}\right]^2 d\theta = \pi \sum_{n=1}^\infty (n^2 - 1)(a_n^2 + b_n^2) \ge 0.$$

Equality occurs if

$$(n^2 - 1)(a_n^2 + b_n^2) = 0$$
 either $n = 1$ or $a_n = b_n = 0$ for $n \ge 2$

In this case

$$f(\theta) = \overline{f} + a_1 \cos \theta + b_1 \sin \theta. \quad \Box$$

Second approach to the isoperimetric problem

The Minkowski Addition of 2 sets $A, B \subset \mathbb{R}^n$ is defined by

$$A \boxplus B := \{a + b : a \in A \text{ and } b \in B\}$$

Warm up:

- Find $[0,3] \times [0,2] \boxplus [0,2] \times [0,1]$
- **2** Find $A \boxplus B$ where A is a triangle and B a rectangle.
- For a set $S \subset \mathbb{R}^2$ and $\rho \in \mathbb{R}$, $\rho > 0$ let $\rho S = \{\rho x : x \in S\}$. Let $\rho \in (0, \frac{1}{2})$, and $B = \{x \in \mathbb{R}^2 : |x| \le 1\}$ and $Q = [0, 1] \times [0, 1]$. Find $B \boxplus \rho B$ and $Q \boxplus \rho B$.
- **③** Find the area and the perimeter of $B \boxplus \rho B$ and $Q \boxplus \rho B$.

Steiner's Inequality

Note that if $\Omega \subset \mathbb{R}^n$ and $\rho \geq 0$

$$\Omega_{
ho} = \Omega \boxplus
ho B = \{x \in \mathbb{R}^2 : \operatorname{dist}(x, \Omega) \le
ho\}$$

Theorem: Let $\Omega \subset \mathbb{R}^2$ be a closed and bounded set with piecewise C^1 boundary whose area is A and whose boundary has length L. Let $\rho \ge 0$. Then

$$egin{array}{rcl} {\sf Area}(\Omega_
ho) &\leq & {\sf A} + {\sf L}
ho + \pi
ho^2 \ {\sf L}(\partial\Omega_
ho) &\leq & {\sf L} + 2\pi
ho. \end{array}$$

If Ω is convex then the inequalities are equalities.

Questions:

- Verify the equalities for a convex polygon.
- Sketch the proof for a convex bounded set.

Let A and B be bounded measurable sets in the plane

$$\sqrt{\operatorname{Area}(A \boxplus B)} \ge \sqrt{\operatorname{Area}(A)} + \sqrt{\operatorname{Area}(B)}.$$

Minkowski proved that equality holds if and only if A = rB + x for some r > 0 and $x \in \mathbb{R}^2$ (i.e. A and B are homothetic).