An introduction to error correcting codes

Exercises II

Exercise 1. Prove that if \mathcal{C} is a code over \mathbb{F}_{q} then \mathcal{C}^{\perp} is also a code over \mathbb{F}_{q}. In other words, prove that \mathcal{C}^{\perp} is vector subspace of \mathbb{F}_{q}^{n}.

Exercise 2. Prove that if \mathcal{C} is a code then $\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathcal{C}$.

Exercise 3. Prove that if H is parity check matrix for \mathcal{C} then we have

$$
x \in \mathcal{C} \Longleftrightarrow H x^{T}=0
$$

Exercise 4. Construct a table of coset leaders and syndromes for the binary code with generator matrix

$$
G=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

Write the parameters of this code. How many errors can this code correct? How many can detect?

Exercise 5. Consider the binary code \mathcal{C}, i.e. \mathbb{F}_{2}, with length 6 and dimension 3 generated by the matrix

$$
G=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

We saw that $\mathcal{C}=\{(000000),(100011),(010101),(001110),(110110),(011011),(101101),(111000)\}$ and that

$$
H=\left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

is a parity check matrix for \mathcal{C}. Use the following table with coset leaders and syndromes

$$
\begin{array}{|l|l|}
\hline e_{0}=(000000) \rightarrow S\left(e_{0}\right)=(000) & e_{4}=(000100) \rightarrow S\left(e_{4}\right)=(100) \\
\hline e_{1}=(100000) \rightarrow S\left(e_{1}\right)=(011) & e_{5}=(000010) \rightarrow S\left(e_{5}\right)=(010) \\
\hline e_{2}=(010000) \rightarrow S\left(e_{2}\right)=(101) & e_{6}=(000001) \rightarrow S\left(e_{6}\right)=(001) \\
\hline e_{3}=(001000) \rightarrow S\left(e_{3}\right)=(110) & e_{7}=(100100) \rightarrow S\left(e_{7}\right)=(111) \\
\hline
\end{array}
$$

to correct errors made in the transmission if the received word is:

- $y=(010001)$
- $y=(011101)$
- $y=(011111)$
- $y=(110010)$
- $y=(110101)$

