Exercises II

Exercise 1. Prove that if \mathcal{C} is a code over \mathbb{F}_q then \mathcal{C}^{\perp} is also a code over \mathbb{F}_q . In other words, prove that \mathcal{C}^{\perp} is vector subspace of \mathbb{F}_q^n .

Exercise 2. Prove that if \mathcal{C} is a code then $(\mathcal{C}^{\perp})^{\perp} = \mathcal{C}$.

Exercise 3. Prove that if H is parity check matrix for \mathcal{C} then we have

$$x \in \mathcal{C} \iff Hx^T = 0.$$

Exercise 4. Construct a table of coset leaders and syndromes for the binary code with generator matrix

Write the parameters of this code. How many errors can this code correct? How many can detect?

Exercise 5. Consider the binary code C, i.e. \mathbb{F}_2 , with length 6 and dimension 3 generated by the matrix

We saw that $C = \{(000000), (100011), (010101), (001110), (110110), (011011), (101101), (111000)\}$ and that

is a parity check matrix for \mathcal{C} . Use the following table with coset leaders and syndromes

$e_0 = (000000) \rightarrow S(e_0) = (000)$	$e_4 = (000100) \rightarrow S(e_4) = (100)$
$e_1 = (100000) \rightarrow S(e_1) = (011)$	$e_5 = (000010) \rightarrow S(e_5) = (010)$
$e_2 = (010000) \rightarrow S(e_2) = (101)$	$e_6 = (000001) \rightarrow S(e_6) = (001)$
$e_3 = (001000) \rightarrow S(e_3) = (110)$	$e_7 = (100100) \rightarrow S(e_7) = (111)$

to correct errors made in the transmission if the received word is:

- y = (010001)
- y = (011101)
- y = (011111)
- y = (110010)
- y = (110101)