An introduction to error correcting codes

Exercises

Exercise 1. Prove that the Hamming distance d is a metric in \mathbb{F}_q^n . In other words, prove that:

- (i) d(x,y) = 0 if and only if x = y and $d(x,y) \ge 0$ for all $x, y \in \mathbb{F}_q^n$;
- (ii) d(x,y) = d(y,x) for all $x, y \in \mathbb{F}_q^n$;
- (iii) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in \mathbb{F}_q^n$.

Recall that $d: \mathbb{F}_q^n \times \mathbb{F}_q^n \longrightarrow [0, n]$ is defined by $d(x, y) = \#\{i: x_i \neq y_i, 1 \leq i \leq n\}$ where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$.

Exercise 2. Prove that if $x, y \in \mathbb{F}_q^n$ then d(x, y) = w(x - y), where w represents the weight defined by $w(z) = \#\{i : z_i \neq 0, 1 \leq i \leq n\}$. Use this to prove that for any linear code \mathbb{C} the minimum distance is equal to the minimum weight.

Exercise 3. Consider the binary code C_1 , i.e. \mathbb{F}_2 , with length 4 and dimension 2 generated by the matrix

$$G = \left(\begin{array}{rrrr} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array} \right).$$

We saw that $C_1 = \{(0000), (1011), (0101), (1110)\}$ and that the minimum distance of this code $d(C_1) = 2$.

Write the generator matrix of the code $C_2 = \{(0000), (0011), (1100), (1111)\}$. Which are the parameters of C_2 ? Is C_2 equivalent to C_1 ?

Recall that two codes are said to be equivalent if one can be obtained by applying a fixed permutation of the positions to all the codewords of the other.