Homework 2

Re-Imaging the World through Linear Algebra
 Dr. Malena Español - Victoria Uribe

Name

\qquad

1. Determine which of the following matrices are symmetric.

$$
A=\left(\begin{array}{ccc}
0 & 8 & 3 \\
8 & 0 & -2 \\
3 & -2 & 0
\end{array}\right), B=\left(\begin{array}{ccc}
-6 & 2 & 0 \\
0 & -6 & 2 \\
0 & 0 & -6
\end{array}\right), C=\left(\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 1 & 2 & 1 \\
1 & 2 & 1 & 2
\end{array}\right)
$$

2. Since vectors in \mathbb{R}^{n} may be regarded as $n \times 1$ matrices, the properties of transposes apply to vectors too. Let $A=\left(\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right)$ and $\mathbf{x}=\binom{5}{3}$. Compute $(A \mathbf{x})^{T}, \mathbf{x}^{T} A^{T}, \mathbf{x x}^{T}$, and $\mathbf{x}^{T} \mathbf{x}$. Is $A^{T} \mathbf{x}^{T}$ defined?
3. Compute the product $A B$ in two ways: (a) by the definition, where $A \mathbf{b}_{1}$ and $A \mathbf{b}_{2}$ are computed separately, and (b) by the row-column rule for computing $A B$.

$$
A=\left(\begin{array}{cc}
4 & -3 \\
-3 & 5 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{cc}
1 & 4 \\
3 & -2
\end{array}\right)
$$

4. Is the sum of two Toeplitz matrices Toeplitz? What about the product? Prove your answer. The following is an example of a Toeplitz matrix:

$$
T=\left(\begin{array}{cccc}
5 & 7 & 9 & 11 \\
8 & 5 & 7 & 9 \\
4 & 8 & 5 & 7 \\
6 & 4 & 8 & 5
\end{array}\right)
$$

5. Is the sum of two circulant matrices circulant? What about the product? Prove your answer. The following is an example of a circulant matrix:

$$
C=\left(\begin{array}{llll}
4 & 1 & 2 & 3 \\
3 & 4 & 1 & 2 \\
2 & 3 & 4 & 1 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

6. What is the cost of computing this matrix?

$$
2\left(\begin{array}{lll}
2 & 3 & 2 \\
1 & 2 & 3 \\
1 & 3 & 4
\end{array}\right)+3\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
7 & 7 & 10 \\
5 & 7 & 12 \\
5 & 9 & 14
\end{array}\right)
$$

7. Check that the following equalities hold.

$$
\begin{aligned}
& \left(\begin{array}{ll}
5 & 5 \\
3 & 5
\end{array}\right)=5\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+5\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+3\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+5\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
5 & 5 \\
3 & 5
\end{array}\right)=3\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)+0\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)+2\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

