Homework 1

Re-Imaging the World through Linear Algebra
 Dr. Malena Español - Victoria Uribe

Name

\qquad

1. Use the vectors $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right), \mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$, and $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ to verify the following algebraic properties of \mathbb{R}^{n}.
a. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
b. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$ for each scalar k.
2. Use the vector $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ to verify the following algebraic properties of \mathbb{R}^{n}.
a. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+\mathbf{u}=\mathbf{0}$
b. $k\left(k^{\prime} \mathbf{u}\right)=\left(k k^{\prime}\right) \mathbf{u}$ for all scalars k and k^{\prime}.
3. Consider the vectors $\mathbf{u}=(2,-7,1), \mathbf{v}=(-3,0,4)$, and $\mathbf{w}=(0,5,-8)$. Compute a.) $3 \mathbf{u}-4 \mathbf{v}$ and b.) $2 \mathbf{u}+3 \mathbf{v}-5 \mathbf{w}$.
4. Verify that the vectors $\mathbf{u}=(-1,0,1), \mathbf{v}=(2,4,2)$, and $\mathbf{w}=(3,-3,3)$ are orthogonal to each other.
5. Compute the Euclidean norm of the vectors $\mathbf{u}=(-1,0,1)$ and $\mathbf{v}=(2,4,2)$ and the distance between them.
6. The 1-norm of a real vector is defined by $\|\mathbf{v}\|_{1}=\sum_{i=1}^{n}\left|v_{i}\right|$. Compute the 1-norm of the vectors $\mathbf{u}=(1,2,3)$ and $\mathbf{v}=(3,2,1)$.
7. The ∞-norm of a real vector is defined by $\|\mathbf{v}\|_{\infty}=\max _{i}\left|v_{i}\right|$. Compute the ∞-norm of the vectors $\mathbf{u}=(1,2,3)$ and $\mathbf{v}=(3,2,1)$.
8. Decide which of the following statements are TRUE and which are FALSE. For the TRUE ones, you have to give a proof. For the FALSE ones, you have to give a counterexample. Here we are considering $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right), \mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$, and $[\mathbf{u}, \mathbf{v}]=\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right)$ is the vector formed by concatenating them.
a. $\|\mathbf{u}\|_{1}+\|\mathbf{v}\|_{1}=\|[\mathbf{u}, \mathbf{v}]\|_{1}$
b. $\|\mathbf{u}\|_{2}^{2}+\|\mathbf{v}\|_{2}^{2}=\|[\mathbf{u}, \mathbf{v}]\|_{2}^{2}$
c. $\|\mathbf{u}\|_{\infty}+\|\mathbf{v}\|_{\infty}=\|[\mathbf{u}, \mathbf{v}]\|_{\infty}$
9. Compute the following:

$$
4\left(\begin{array}{ll}
1 & 2 \\
4 & 6
\end{array}\right)-\left(\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right)-2\left(\begin{array}{ll}
5 & 1 \\
4 & 3
\end{array}\right) .
$$

10. Find the values of x, y, z, and w so that the following matrix equality holds:

$$
3\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{cc}
x & 6 \\
-1 & 2 w
\end{array}\right)+\left(\begin{array}{cc}
4 & x+y \\
z+w & 3
\end{array}\right) .
$$

