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Operators of the Fractional Calculus

Operators of the Fractional Calculus

Jαt f (t) =
1

Γ(α)

∫ t

0
(t − t ′)α−1 f (t ′) dt ′ , α > 0 , (1)

RLDα
t = Dn

t Jn−α
t , CDα

t = Jn−α
t Dn

t , n − 1 < α < n , (2)

RLDn
t =C Dn

t = Dn
t , n = 1,2, , · · · (3)

For α 6= n

CDα
t f (t) =RL Dα

t

(
f (t)−

n−1∑
k=0

f (k)(t)

k !

)
. (4)

Laplace transform of the Caputo derivative of f (t) with
t > 0

L [ CDα
t f (t), t → s] = sα f̃ (s)−

n−1∑
k=0

sα−1−k f (k)(0) . (5)
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Time-Fractional Wave Equation

Time-Fractional Wave Equation −∞ < x <∞, t > 0

Dt
βu(x , t) =

∂2u(x , t)
∂x2 , 1 < β ≤ 2, (6)

u(x ,0) = δ(x),
∂u(x , t = 0)

∂t
= 0, (7)

where Dβ
t denotes Caputo fractional differentiation. Then,

Dt
βu(x , t) =

1
Γ(2− β)

∫ t

0

∂2u(x , t ′)/∂t ′2

(t − t ′)β−1 dt ′ . (8)
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The fundamental Solution and the M-Wright function

The fundamental solution and the M-Wright function

u(x , t) = g(x , t) =
1
2

t−
β
2 Mβ

2
(|x |t−

β
2 ) , (9)

with the M-Wright Function defined for ν ∈ (0,1) as

Mν(z) =
1
π

∞∑
n=1

(−z)n−1

(n − 1)!
Γ(νn) sin(πνn) , (10)

see Mainardi [5].
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The fundamental Solution and the M-Wright function

The process with density t−
β
2 Mβ

2
(x , t−

β
2 ) is a fractional

drift process, called "Mittag-Leffler process” by some
people. It is distinct from Pillai’s ML-process.
Hence g(x , t) is the sojourn density of a randomly
wandering particle, monotonically rightwards with
probability 1

2 , monotonically leftwards with probability 1
2 .

Remark: Let us recall that t−νMν(t∗t−ν) is the density (in
t∗, evolving with t) of the inverse ν-stable subordinator, see
Gorenflo-Mainardi [3]-[4].
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Distributed Order Fractional Wave Equation

Distributed Order Fractional Wave Equation
p(β) generalized function, p(β) ≥ 0

0 <
∫

(1,2]
p(β)dβ <∞ . (11)

Distributed order fractional Caputo

Dt
p(.)u(x , t) =

∂2u(x , t)
∂x2 , u(x ,0) = δ(x), ut (x , t = 0) = 0

(12)
where

Dp(.)
t f (t) =

∫ 2

1
p(β)

(
Dβ

t f
)

(t) dβ . (13)

Special Case:
p(β) = δ(β − β0).
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Fourier-Laplace Solution

Fourier-Laplace Solution

v̂(κ) =

∫ ∞
−∞

eiκxv(x) dx

w̃(s) =

∫ ∞
0

e−stw(t) dt

B(s) =

∫
(1,2]

p(β)sβ dβ

̂̃g(κ, s) =
B(s)/s

B(s) + κ2

Question: Is g(x , t) a density in x , evolving in t > 0? Yes

ˆ̃g(κ = 0, s) =
1
s
, 1 = ĝ(κ = 0, t) =

∫ ∞
−∞

g(x , t) dx



THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY

Introduction

Fourier-Laplace Solution

Remains to show that always and everywhere g(x , t) ≥ 0.
Remark: It is known (see[1]) that the fundamental solution
of the distributed order fractional diffusion equation,∫

(0,1]
p(β)Dt

βu(x , t)dβ =
∂2u(x , t)
∂x2 , (14)

is a probability density evolving in time and that there
exists a corresponding stochastic process.
But for the fractional wave equation a different method of
proof is required.
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Special Type Functions

Special types of functions See the excellent book by
Schilling et al. [8]
(a) Completely monotone
(b) Stieltjes
(c) Bernstein
(d) Complete Bernstein
Let us consider a function ϕ(λ) : (0,∞)→ R.
(a): ϕ is Completely monotone ⇔

(−1)nϕ(n)(λ) ≥ 0, for n = 0,1,2, · · ·

⇔ It is the Laplace transform of a non-negative measure.
Properties: Products and positive linear combinations of
completely monotone functions are completely monotone
Examples: λ−α, for α ≥ 0, e−λ

α
for 0 < α ≤ 1

Eα,β(−λ) =
∑∞

k=0
(−λ)k

Γ(αk+β) for 0 < α ≤ 1 , β ≥ α
(Mittag-Leffler)
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Special Type Functions

(b): ϕ is Stieltjes function ⇔
ϕ is Laplace transform of a completely monotone function.
The functions λ−α, for 0 < α ≤ 1 are Stieltjes.
(c) ϕ is Bernstein function ⇔
ϕ ∈ C∞ and ϕ′ is completely monotone.
Examples: λα, for 0 < α ≤ 1, 1− e−λ

Properties: Positive linear combinations and compositions
are again Bernstein, likewise pointwise limits of sequences.
ϕ completely monotone and ψ Bernstein⇒ ϕ(ψ) is
completely monotone.
ϕ Bernstein⇒ ϕ(λ)

λ is completely monotone.
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Special Type Functions

(d): ϕ is Completely Bernstein ⇔ ϕ(λ)
λ is Stieltjes.

Properties: If ϕ is completely Bernstein and ψ is Stieltjes,
then ϕ(ψ) is Stieltjes.
ϕ 6= 0 is complete Bernstein⇔ 1

ϕ is Stieltjes.
The set of complete Bernstein functions is a convex cone.
Examples: λα, for 0 < α ≤ 1
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Distributed order fractional diffusion equation

Distributed order time-fractional diffusion equation∫
(0,1]

p(β)Dt
βu(x , t)dβ =

∂2u(x , t)
∂x2 (15)

B(s) =

∫
(0,1]

p(β)sβdβ, ˆ̃g(κ, s) =
B(s)

s
B(s) + κ2 (16)

g(x , t) =

∫ ∞
0

1
2
√
πr

e−
x2
4r R(r , t) dr (17)

R̃(r , s) =
B(s)

s
e−rB(s) (18)

B(s) is Bernstein, B(s)/s completely monotone, e−rB(s) is
completely monotone in s for all x ≥ 0. Hence R̃
completely monotone in s, hence R ≥ 0 and g ≥ 0. That g
is normalized, shown as previously.
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Distributed order fractional wave equation

Distributed order fractional wave equation

̂̃g(κ, s) =
B(s)

s
B(s) + κ2 , B(s) =

∫
(1,2]

p(β)sβdβ (19)

By Fourier inversion

g̃(x , s) =
1
2

f̃1(s) f̃2(s) (20)

f̃2(s) =

√
(B(s))

s
, f̃1(s) = exp(−|x |

√
(B(s))) (21)

Plan: Show f̃1 and f̃2 completely monotone, hence g̃(x , s),
is completely monotone in s for all x ≥ 0, and
consequently g(x , t) ≥ 0.
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Steps of proof

Steps of proof

(f̃2(s))2 =

∫
(1,2]

p(β)sβ−2dβ

sβ−2 is Stieltjes, hence also (f̃2(s))2;
sf̃2(s) =

√
(B(s)) is completely Bernstein,

f̃2(s) =
√

(B(s))/s is completely monotone,
f̃1(s) = exp(−|x |

√
(B(s))) is a completely monotone

function of a Bernstein function, hence completely
monotone.
Result: g̃(x , s) is completely monotone in s for all x ≥ 0,
hence g(x , t) ≥ 0.
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Distributed order diffusion wave equation

Distributed order diffusion wave equation

Dt
p(.)u(x , t) =

∂2u(x , t)
∂x2

p(β) ≥ 0,
∫

(0,2] p(β)dβ > 0
Cases (a), (b), (c)
(a): p(β) ≡ 0 in (1,2] distributed order fractional diffusion,
we know that g(x , t) is a probability density in x .
(b): p(β) ≡ 0 in [0,1] distributed order wave, we have
proved this.
(c): p(β) 6= 0 in [0,1], 6= 0 in (1,2] distributed order diffusion
wave equation.
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Distributed order diffusion wave equation

Case (c) is open .
A few very special cases have been discussed affirmatively
in e.g. Orsingher-Beghin [7].

p(β) = δ(β − 2α) + 2λδ(β − α), 0 < α ≤ 1, λ > 0

Of course 0 < α ≤ 1
2 is d.o. fractional diffusion.
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Stochastic Process?

Stochastic Process?
Does there exist a stochastic process having g(x , t) as
density in x evolving in t?
Clearly yes in the special case

p(β) = δ(β − β0), 0 < β0 ≤ 2.

Also yes for distributed order fractional diffusion

p(β) = 0 , for 1 < β ≤ 2 .

If β0 = 2 the process is degenerated: the particle moves
with constant velocity 1 monotonically rightwards with
probability 1

2 , monotonically leftwards with probability 1
2



THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY

Introduction

References

References
[1] A.V. Chechkin, R. Gorenflo, I.M. Sokolov: Retarding
sub-diffusion and accelerating super-diffusion by
distribiuted order fractional diffusion equations, Phys. Rev.
E 66 (2002), 046129/1-7.
[2] R. Gorenflo, Yu Luchko, M. Stojanovic: Fundamental
solution of a distributed order time-fractional diffusion-wave
equation as probability density, Fract. Calc. Appl. Anal. 16
(2013), 297-316.
[3] R. Gorenflo and F. Mainardi: Subordination pathways to
fractional diffusion, Eur. Phys. J. Special Topics 193
(2011), 119-132. http://arxiv.org/abs/1104.4041
[4] R Gorenflo and F Mainardi: Parametric Subordination in
Fractional Diffusion Processes, In: J. Klafter, S.C. Lim and
R. Metzler (Editors): Fractional Dynamics, Recent
Advances, World Scientific, Singapore 2012, Chapter 10,
pp. 227-261. http://arxiv.org/abs/1210.8414



THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY

Introduction

References

[5] F. Mainardi: Fractional Calculus and Waves in Linear
Viscoelasticity, Imperial College Press, London, 2010.
[6] F. Mainardi, A. Mura, G. Pagnini and R. Gorenflo:
Time-fractional diffusion of distributed order, J. Vibr.
Control 14 (2008), 1267-1290.
http://arxiv.org/abs/cond-mat/0701132

[7] E. Orsingher and L. Beghin: Time fractional telegraph
equations and telegraph processes with Brownian time,
Prob. Theory Rel. Fields 128 (2004), 141-160.
[8] R.L. Schilling, R. Song, Z. Vondracek: Bernstein
Functions. Theory and Applications, De Gruyter, Berlin,
2-nd Ed. 2010.



THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY

Introduction

References

This lecture was presented to the "International
Symposium on Fractional PDEs: Theory, Numerics
and Applications", June 3-5, 2013, Salve Regina
University, New Port, RI, USA
THE SPEAKER APPRECIATES COLLABORATION WITH YURI
LUCHKO AND MIRA STOJANOVIC AND WORK BY SEEMA S.
NAIR IN PRODUCING THE SLIDES. HE IS GRATEFUL TO
FRANCESCO MAINARDI FOR HIS ASSISTANCE IN
PRODUCING (AFTER THE CONFERENCE) A REVISED
PRESENTATION.



THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY

Introduction

References



THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY

Introduction

References


	Introduction
	Operators of the Fractional Calculus
	Time-Fractional Wave Equation
	The fundamental Solution and the M-Wright function
	Distributed Order Fractional Wave Equation
	Fourier-Laplace Solution
	Special Type Functions
	Distributed order fractional diffusion equation
	Distributed order fractional wave equation
	Steps of proof
	Distributed order diffusion wave equation
	Stochastic Process?
	References


