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In this talk, I'd like to present an overview of our recent works on
the finite difference methods for the time fractional differential
equation.
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1.1 Definition of the Caputo fractional derivative

For a given positive real number v, n — 1 < v < n, the Caputo
fractional derivative with the order of ~, is defined by

Cve(ey _ 1L R3]
o Def(t) = F(n—~) /o (t—&)—ntl S

» Case vy € (0,1):
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1.1 Definition of the Caputo fractional derivative

For a given positive real number v, n — 1 < v < n, the Caputo
fractional derivative with the order of ~, is defined by
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1.2 Approximation of the fractional derivative: v =

N —

Theorem [Sun and Wu 2004 ANM]
Suppose f(t) € C?[0, t,] Let

[aof(tn) — > (an—k-1— an—k) f(tx) — an-1f(to)|,

R(F(tn))] < 6}(1of2 - 11) max [F(0)r,

where a; = /[ + —\ﬁ, /> 0.



1.3 Approximation of the fractional derivative: v € (0, 1)

Theorem [Sun and Wu 2006 ANM]
Suppose f(t) € C?[0, t,] and 7y € (0,1). Let

R(f(tn)) = 6D} f(tn)—

— n—1
r(;__,y,y) [aof(t,,) - Z (an—k—l - an—k)f(tk) = a,,,lf(to)],
k=1

then
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R(f(tn))| <
IR(F(n))] < = T
where a; = (I + 1)}=7 — 1=7 [ >0.

Sttty



1.4 Approximation of the fractional derivative: v € (1, 2)

Theorem [Sun and Wu 2006 ANM]
Suppose f(t) € C3[0, t,] and v € (1,2). Let

= 1
R(F(ta)) = 5 [§DYF(t) + §DYF(t01)] -
Tl—v o1 n—1 _— 1 ,
r3—7) [bo(stf 2 =) (boket = bps)8eF 2 — 5bn—1f (to)},
k=1
then

R(f(tn))| < _ol=y _ 2 FI1($) (73—

where

f(ti) — f(t
by = (I+1)2 =277, [ >0, 6,2 = M, 1<k<n



2.1 Dirichlet boundary problem of the sub-diffusion
equation

Consider the following one-dimensional problem

gD?u(X,t):/faazl(;(X);’t)—i—f(x,t), a<x<b 0<t<T,
(1)

u(x,0) =v(x), a<x<b, (2)

u(a,t) = p1(t), u(b,t)=pa(t), 0<t<T, (3)

where o € (0,1).

The fractional equation (1) is called the time fractional
sub-diffusion equation.



2.1 Dirichlet boundary problem of the sub-diffusion

equation
For finite difference approximation, discretize equally the interval
[a, b] with x; = a+ ih (0 < i< M), [0, T] with
tx = k7 (0 < k < N), where h=1/M and 7 = T /N are the
spatial and temporal step sizes, respectively. First the following
notations are introduced.

1 1
5xU,~_% = E(u; —uj_1), O3ui= E(éxuiJr% — 5Xu,_%),

1 .
lulloo = max_ |ui|, Auj = E(u;_1 +10u; + ujy1), 1<i<M-—:

In addition, denote a discrete fractional derivative operator DY

k—1
1 .
Dfuf‘ = —[uf— E (ak,j,l—ak,j)uf—ak,lu? , 0<i<M, 1<k<N.
w :
Jj=1
Define the grid function
Uk =u(x;, t), 0<i<M, 0<k<N.



2.1 Dirichlet boundary problem of the sub-diffusion
equation

In 2006, we constructed the following difference scheme
Dfuk_ma52u-k+f-k 1<i<M—-1, 1<k<N,
IOZ (Xl) O M7
u§ = p1(t), U/If// =po(ty), 1< k<N

We proved that



2.1 Dirichlet boundary problem of the sub-diffusion
equation

Theorem (Stability) [Sun and Wu 2006 ANM]

The finite difference scheme (4)-(6) is unconditionally stable to the
initial value ¥ and the right hand term f.



2.1 Dirichlet boundary problem of the sub-diffusion
equation

Theorem (Stability) [Sun and Wu 2006 ANM]

The finite difference scheme (4)-(6) is unconditionally stable to the
initial value v and the right hand term f.

Theorem (Convergence) [Sun and Wu 2006 ANM]|

Assume that u(x, t) € Cif([a, b] x [0, T]) is the solution of
(1)-(3) and {u¥ |0 < i< M, 0 < k < N} is solution of the finite
difference scheme (4)-(6), respectively. Then there exists a positive
constant C such that

UK — uK||loo < C(727 + h?), 0< k< N.



2.1 Dirichlet boundary problem of the sub-diffusion
equation

In 2011, we established the following difference scheme
ADCuf = kodouf + AFf, 1<i<M—1, 1<k N, (7)
uf = (), 0<i<M, (8)
uf = e1(te),  upp=a(tc), 1< k<N (9)

We proved that



2.1 Dirichlet boundary problem of the sub-diffusion
equation

Theorem (Stability) [Gao and Sun 2011 JCP]

The finite difference scheme (7)-(9) is unconditionally stable to the
initial value ¥ and the right hand term f.



2.1 Dirichlet boundary problem of the sub-diffusion
equation

Theorem (Stability) [Gao and Sun 2011 JCP]

The finite difference scheme (7)-(9) is unconditionally stable to the
initial value v and the right hand term f.

Theorem (Convergence) [Gao and Sun 2011 JCP]

Assume that u(x, t) € CS:?([a, b] x [0, T]) is the solution of
(1)-(3) and {u¥ |0 < i< M, 0 < k < N} is solution of the finite
difference scheme (7)-(9), respectively. Then there exists a positive
constant C such that

UK — K)o < C(7272 + h%), 0< k< N.



2.1 Dirichlet boundary problem of the sub-diffusion
equation

In(1)-(3), leta=0b=1T=1k, =1,

f(x,t) = |[(1+7)t7 — r2+1) t27],

M1+ 2v)
e1(t) = t17, @o(t) = et u(x,0) = 0.
Then the exact solution is

u(x, t) = et



2.1 Dirichlet boundary problem of the sub-diffusion

equation
Table: Convergence orders of the difference scheme (7)-(9) in temporal

. . . _ 1
direction with h = 555

o T exo(h, 7) Order
a=03 1/20 1.341e 4 ¥
1/40 4.341e-5 1.6276
1/80 1.389e-5 1.6444
1/160 4.404e-6 1.6567
a=05 1/20 4 544e-4 +
1/40 1.656e-4 1.4558
1/80 5.979e-5 1.4700
1/160 2.144e-5 1.4794
a=0.7 1/20 1.237¢3 *
1/40 5.111e-4 1.2753
1/80 2.098e-4 1.2844
1/160 8.579e-5 1.2903




2.1 Dirichlet boundary problem of the sub-diffusion
equation

Table: Convergence orders of the difference scheme (7)-(9) in spatial

direction (7 = 550555 @ = 0.75).

h eso(h, T) Order
1/2 4.613e5 -
1/4 2.881e-6 4.001

1/8 1.588e-7 4.181




2.2 Neumann boundary problem of the sub-diffusion
equation

Consider the following one-dimensional time fractional
sub-diffusion equation

2
t
§put) = Z90D | pe), a<x<h 0<t<T, (10)
u(x,0) = p(x), a<x<b, (11)
8[_](37 t) Ou(b, t)
T\ ) = < T.
Cramn - B L -

where o € (0,1).



2.2 Neumann boundary problem of the sub-diffusion
equation

In 2011, We constructed the following spatial second order
difference scheme

2
Dous = S0k + A 1< k<N, (13)
2 h ™ 32 2
1 1
§(D3U,{:% + Dgu,ﬁr%) = SZuf + E(f,-li% + f}i%)a
1<i<M—-1,1<k<N, (14)
2
Dty y = =0ty s +fy 1, TSKSN, (15)
ud =(x), 0< i < M. (16)

We proved that



2.2 Neumann boundary problem of the sub-diffusion
equation

Theorem (Stability) [Zhao and Sun 2011 JCP, Ren]

The finite difference scheme (13)-(16) and (17)-(20) is
unconditionally stable to the initial value % and the right hand
term f.



2.2 Neumann boundary problem of the sub-diffusion
equation

Theorem (Stability) [Zhao and Sun 2011 JCP, Ren]

The finite difference scheme (13)-(16) and (17)-(20) is
unconditionally stable to the initial value v and the right hand
term f.

Theorem (Convergence) [Zhao and Sun 2011 JCP]

Assume that u(x, t) € Cif([a, b] x [0, T]) is the solution of

(10)-(12) and {uk |0 < i< M, 0 < k < N} is solution of the
finite difference scheme (13)-(16), respectively. Then there exists a
positive constant C such that

[UX — uF||loo < C(T27 + H?), 0< k<N



2.2 Neumann boundary problem of the sub-diffusion

equation

In 2013, we presented the following spatial fourth order finite

difference scheme

2 h

BD2uf = Z(sxug + 6(fx)g +Bff, 1< k<N,

BDYuk = 52uk + BfF, 1<i<M—1, 1<k<N,
2 h

BDuf, = —E(sxu; — g(fx)ﬁﬂ +Bfl, 1<k<N,

W =(x), 0<i<M,

where
1 .
6(5u0 +u), =0,
1
Bu; = E(U,;l + 10u; + U,‘+1), 1<is<M-—1,

1 .
,(uM_l P 5UM), i= M.

6



2.2 Neumann boundary problem of the sub-diffusion
equation

Theorem (Stability) [Sun and Zhao, 2013 JCP]

The finite difference schemes (17)-(20) is unconditionally stable to
the initial value ¢ and the right hand term f.



2.2 Neumann boundary problem of the sub-diffusion
equation

Theorem (Stability) [Sun and Zhao, 2013 JCP]

The finite difference schemes (17)-(20) is unconditionally stable to
the initial value v and the right hand term f.

Theorem (Convergence) [Ren, Sun and Zhao 2013 JCP]

Assume that u(x, t) € CS:?([a, b] x [0, T]) is the solution of
(10)-(12) and {u¥ | 0 < i < M, 0 < k < N} is solution of the
finite difference scheme (17)-(20), respectively. Then there exists a
positive constant C such that

|UK — u¥|| < C(r> %+ h*), 0< k<N



2.2 Neumann boundary problem of the sub-diffusion
equation

In (10), let T = 1. In order to test the convergence rate of the
proposed methods, we consider the exact solution of the problem
(10)-(12) as follows

u(x,t) = ex%(1 — x)2t7 72,

Then it can be checked that the corresponding forcing term f(x, t)
and initial condition ¢(x) are respectively
r(fy+3) 2 x. 2

f(x,t)= Tt“ e x?(1—x)? — e t72(2 - 8x + x> +6x3 +x%),

and
p(x) = 0.



2.2 Neumann boundary problem of the sub-diffusion

equation
Table: Convergence orders of both schemes in temporal direction with

_ _1
h= 20000 -

o T exo(h, 7) Order
a=03 1/20 1.341e 4 ¥
1/40 4.337e-5 1.6469
1/80 1.385e-5 1.6647
1/160 4.368e-6 1.6915
a =05 1/20 4543¢4 ¥
1/40 1.656e-4 1.4704
1/80 5.977e-5 1.4806
1/160 2.142e-5 1.4892
a=07 1/20 1.237¢3 ¥
1/40 5.111e-4 1.2845
1/80 2.098e-4 1.2905
1/160 8.577e-5 1.2946




2.2 Neumann boundary problem of the sub-diffusion
equation

Table: Convergence order of difference scheme (13)-(16) in spatial
direction ( 7 = 5555, @ = 0.5).

h eso(h, T) Order
1/10 3.100e-2 X
1/20 7.763e-3 1.9977
1/40 1.943¢-3 1.9981
1/80 4.859e-4 2.0000

Table: Convergence order of difference scheme (17)-(20) in spatial

. . _ 1 _
direction ( 7 = {gg550, @ = 0.5).

h eso(h, T) Order
1/5 2.338e-3 .
1/10 1.483e-4 3.9788
1/20 9.304e-6 3.9946
1/40 5.827e-7 3.9969

1/80 3.713e-8 3.9723



2.2 Neumann boundary problem of the sub-diffusion
equation

Table: The maximum norm error and CPU time of two schemes.

scheme (17)-(20) scheme (13)-(16)
a | N |M ex(h,7) CPU time(s) | M ex(h,7) CPU time(s)

0.3 | 585 |15 3.335e-5 0.4907 225 7.645e-5 6.6628
1151 |20 1.056e-5 1.4478 400 2.419e-5  26.9830
1947 |25 4.330e-6 3.6058 625 9.906e-6  85.8940
2989 (30 2.089e-6 7.9330 900 4.777e-6 232.3370

0.5 | 1368 |15 3.022e-5 1.3981 225 6.057e-5  19.1151
2947 |20 9.571e-6 5.3454 400 1.916e-5 101.8454
5344 |25 3.922e-6  16.7761 |625 7.850e-6  406.5071
8689 (30 1.892e-6  44.7167 |900 3.785e-6 1344.5115

0.7 | 4157 |15 2.747e-5 6.8338 225 4.692e-5  98.2291

10073 (20 8.701e-6  40.6099 |400 1.484e-5 794.8375
20015 25 3.566e-6 172.7832 625 6.080e-6 4294.0118
35074 |30 1.720e-6 589.2156 |900 2.932e-6 18178.9099




2.3 Space unbounded domain problem for the time
fractional sub-diffusion equation

We are concerned with the fractional sub-diffusion equations on
the whole-space

$DYu(x, t) — Kyuee(x, t) = f(x, 1), (x,t) € Q=R x [0, T],

(21)
u(x,0) =¢(x), x€R, (22)
u(x,t) — 0, when x — +oo, te (0, T], (23)

where supp{f(x, £)} € [X0. Xe] x [0, T], supp{e(x)} € [X¢, X&l.



2.3 Space unbounded domain problem for the time
fractional sub-diffusion equation

Using the Laplace transform, the original problem on the space
unbounded domain is reduced to the initial-boundary value
problem on a space bounded domain, i.e.,

§DJu(x,t) — Kyue(x, t) = f(x,t),  (x,t) € [X(, Xg] x (0, T],

(24)
U(Xvo) = w(X), X € [XL>XR]7 (25)
8”(52”) = \/%OCDZ/ZU(XL,L“), te (0, 7], (26)
QuXp,t) _ 1 EDY?u(Xg, t), t € (0, T]. (27)

ox VK



2.3 Space unbounded domain problem for the time
fractional sub-diffusion equation

We constructed the following spatial second order difference

scheme
DYuf — K,02ul =fK, 1<i<M—-1, 1<k<N, (28)
2K
Dyl — =7 [duk \/KDW ] =f 1<k<N, (29)

2K 1
DY uk Y [— —_DY2yk, — 5Xu§4_4 —fh 1< k<N,
2

Ve
(30)

wW=1y(x), 0<i<M, (31)

1

and the following spatial fourth order finite difference scheme for
the case of v <2/3,



2.3 Space unbounded domain problem for the time
fractional sub-diffusion equation

2K i
BD]ug — TV(‘&”? VK
2l
hlr 1
7[ D37/2 K fX(Xo,tk)} —|—Bf0k, I<k<N, (32)

Dy/2uf)

Ug —

_gKy \/Kiﬁf ‘
BDCuk — K, 82ul = B, 1<i<M—1, 1<k<N, (33)
2K 1
BDTUM h < MDT Unm 5XUM—%)
h1 1 3y2 & K
2y D%y —fX(XMtk)]+BfM I<ksN
6K/y|: \/Ki,y t M ) ) b
(34)
(35)



2.3 Space unbounded domain problem for the time
fractional sub-diffusion equation

where

T v <2/3,
‘ l (Ulk - Uik_l)/T7 Y= 2/3a

We proved that



2.3 Space unbounded domain problem for the time
fractional sub-diffusion equation
Theorem (Stability) [Gao, Sun and Zhang 2013 JCP]

The finite difference schemes (28)-(31) and (32)-(35) are
unconditionally stable to the initial value ¥ and the right hand
term f.



2.3 Space unbounded domain problem for the time
fractional sub-diffusion equation

Theorem (Stability) [Gao, Sun and Zhang 2013 JCP]

The finite difference schemes (28)-(31) and (32)-(35) are
unconditionally stable to the initial value ¥ and the right hand
term f.

Theorem (Convergence) [Gao, Sun and Zhang 2013 JCP]

Assume that u(x, t) € Cif([a, b] x [0, T]) is the solution of

(24)-(27) and {ulk |0 < i< M, 0< k< N} is solution of the
finite difference scheme (28)-(31), respectively. Then there exists a
positive constant C such that

$72Uk —uk||2, < C(>7 4+ h?), 0<n<N.
k=1



2.3 Space unbounded domain problem for the time
fractional sub-diffusion equation

Theorem (Convergence) [Gao, Sun and Zhang 2013 JCP]

Assume that u(x, t) € Cgf([a, b] x [0, T]) is the solution of
(24)-(27) and {uf | 0 < i < M, 0 < k < N} is solution of the
finite difference scheme (32)-(35), respectively. Then there exists a
positive constant C such that

n
JTZ | UK — uk|2, < C(727 4+ h*), 0< n<N.
k=1



2.3 Space unbounded domain problem for the time

fractional sub-diffusion equation

Let see the following numerical results. For the problem, see
(Convergence) [Gao, Sun and Zhang 2013 JCP].

Table: Convergence orders in temporal direction with h =

_1
20000 *

scheme (28)-(31)

scheme (32)-(35)

0% T ex(h,7)  Order | ex(h,7)  Order
1/ 10 | 1.615936e-1 * 1.615934e-1 *
1/ 20 | 6.326587e-2  1.35 | 6.326573e-2 1.35

2/3 | 1/ 40 | 2.508100e-2 1.33 | 2.508087e-2 1.33
1/ 80 | 9.986011e-3 1.33 | 9.985876e-3 1.33
1/160 | 3.978914e-3 1.33 | 3.978784e-3 1.33
1/ 10 | 8.150871e-2 * 8.150857e-2 *
1/ 20 | 2.922531e-2 1.48 | 2.922517e-2 1.48

1/2 | 1/ 40 | 1.052246e-2 1.47 | 1.052232e-2 1.47
1/ 80 | 3.784390e-3 1.48 | 3.784252e-3 1.48
1/160 | 1.357142e-3  1.48 | 1.357003e-3 _ 1.48




2.3 Space unbounded domain problem for the time
fractional sub-diffusion equation

Table: Convergence orders of scheme (28)-(31) and scheme (32)-(35) in
spatial direction ( T = 55555, = 0.5).

scheme (28)-(31)

scheme (32)-(35)

0% h exo(h,7)  Order | ex(h,7)  Order
1/ 10 | 8.652041e-1 * 1.710801e-1 *

1/2 | 1/ 20 | 2.086740e-1 2.05 | 1.132355e-2 3.92
1/ 40 | 5.177437e-2  2.01 | 7.183828e-4  3.98
1/ 80 | 1.292664e-2  2.00 | 4.533485e-5 3.99
1/ 10 | 8.580534e-1 * 1.619886e-1 *

2/311/20 | 2077051e-1 2.05 | 1.073701e-2 3.92
1/ 40 | 5.156900e-2 2.01 | 6.826498e-4  3.98
1/ 80 | 1.288174e-2 2.00 | 4.431081e-5 3.95




2.3 Space unbounded domain problem for the time

fractional sub-diffusion equation

Table: The maximum norm error and CPU time of two schemes.

scheme (32)-(35)

scheme (28)-(31)

N | M ex(h,t) CPU(s)| M ex(h,7)  CPU (s)
410 | 30 2.3608e-3 0.66 287 1.2825e-3 3.45
884 | 40 7.4933e-4 2.43 509 4.0789%-4  19.10
1603 | 50 3.0741e-4 7.89 796 1.6702e-4  79.31
2606 | 60 1.4839e-4 22.09 | 1146 8.0633e-5 269.93
3931 | 70 8.0141e-5  53.95 1560 4.3537e-5  788.90




3.1 Dirichlet boundary problem for time fractional
diffusion-wave equation

Consider the following one-dimensional time fractional
diffusion-wave equation

o O?u(x, t
th U(X7 t) - 8()(2 )

u(x,0) = (x), ue(x,0) =@(x), a<x<b,
u(37 t) = Sol(t)’ u(bv t) = (PZ(t)? 0<t<T,

+f(x,t), a<x<b, 0<t<T,

where a € (1,2).

The fractional equation in (36) is called the time fractional
diffusion-wave equation.



3.1 Dirichlet boundary problem for time fractional
diffusion-wave equatio

For the grid function v = {v¥ | 0 < k < N}, define

s %(VkJrl_’_vk), 5th+% _ l(karl_Vk)’ 0< k< N—1.
T
In addition, denote a discrete fractional derivative operator DY as
follows
1 1 - 1
Digk—2 = Z [5rgk_§ =) (bk—j-1 — bi—j)d:g’ 2 — bi_18'(0) |,
=1

where i = 797II(3 — ) and by = (k +1)27® — k2=,

We showed that



3.1 Dirichlet boundary problem for time fractional
diffusion-wave equation

In 2006, we constructed the following second order and compact
finite difference schemes, respectively. i.e.,



3.1 Dirichlet boundary problem for time fractional
diffusion-wave equation

Theorem (Stability) [Sun and Wu 2006 ANM]

The finite difference schemes (39)-(41) is unconditionally stable to
the initial values 1, ¢ and the right hand term f.



3.1 Dirichlet boundary problem for time fractional
diffusion-wave equation

Theorem (Stability) [Sun and Wu 2006 ANM]

The finite difference schemes (39)-(41) is unconditionally stable to
the initial values 1, ¢ and the right hand term f.

Theorem (Convergence) [Sun and Wu 2006 ANM]

Assume that u(x, t) € Ci’?([a, b] x [0, T]) is the solution of
(36)-(38) and {u¥ | 0 < i< M, 0< k< N} is solution of the
finite difference scheme (39)-(41), respectively. Then there exists a
positive constant ¢, such that

UK — uK|loo < (737 + h?), 0< k< N.



3.1 Dirichlet boundary problem for time fractional
diffusion-wave equation

In 2010, we established the following spatial fourth order difference

scheme
k—1 5 k-1 k—1 .
ADfu; ? =d5u; 2 +Af; 2, 1<i<M—-1, 1<k<N,
(42)
u? =1p(x), 0<i<M, (43)
u§ = p1(t), ufp=e2(ts), 1<k<N (44)

We proved that



3.1 Dirichlet boundary problem for time fractional
diffusion-wave equation

Theorem (Stability) [Du, Cao and Sun 2010 AMM]

The finite difference schemes (42)-(44) is unconditionally stable to
the initial values 1, ¢ and the right hand term f.



3.1 Dirichlet boundary problem for time fractional
diffusion-wave equation

Theorem (Stability) [Du, Cao and Sun 2010 AMM]

The finite difference schemes (42)-(44) is unconditionally stable to
the initial values 1, ¢ and the right hand term f.

Theorem (Convergence) [Du, Cao and Sun 2010 AMM]

Assume that u(x, t) € CS:?([a, b] x [0, T]) is the solution of
(36)-(38) and {u¥ | 0 < i< M, 0< k< N} is solution of the
finite difference scheme (42)-(44), respectively. Then there exists a
positive constant ¢4 such that

U  — uF|loo < ca(37 ¢+ h*), 0< k<N



3.1 Dirichlet boundary problem for time fractional

diffusion-wave equation

Table: Convergence order of difference scheme (42)-(44) in temporal

. . . _ 1
direction with h = 555.

o T exo(h, 7) Order
a=13 1/20 1.341e-4 *
1/40 4.341e-5 1.6276
1/80 1.389e-5 1.6444
1/160 4.404e-6 1.6567
a=15 1/20 454404 ¥
1/40 1.656e-4 1.4558
1/80 5.979e-5 1.4700
1/160 2.144e-5 1.4794
a=17 1/20 1.237e-3 *
1/40 5.111e-4 1.2753
1/80 2.098e-4 1.2844
1/160 8.579%e-5 1.2903




3.1 Dirichlet boundary problem for time fractional
diffusion-wave equation

Table: Convergence order of difference scheme (42)-(44) in spatial

direction ( 7 = 509050 @ = 1.5).
h eso(h, 7) Order
1/2 4.4035e-3 *
1/4 2.5365e-4 4.118
1/8 1.5560e-5 4.027
1/16 9.7010e-7 4.004

1/32 6.2794e-8 3.949




3.2 Neumann boundary problem for time fractional
diffusion-wave equation

Considering the following one-dimensional time fractional
diffusion-wave equation

2
SDu(x, t) = E)Lé(;gt) +f(x,t), a<x<b, 0<t<T, (45)
u(,0) = o), 20—y, a<x<n (46)
Jdu(a, t) du(b, t)
= = <
=0, =2 =0, 0<t<T, (47)

where a € (1,2).



3.2 Neumann boundary problem for time fractional
diffusion-wave equation

In 2013, we constructed the following spatial second order
difference scheme

HU;: uj, 1§i</\/]—1,
1 .
g(UM—l +2upy), =M.
and the spatial fourth order finite difference scheme



3.2 Neumann boundary problem for time fractional
diffusion-wave equation

k— 2 1 h, kL K k-1 ¢ k—
BD2uy * = Loxty P+ () = gg|(hewdo * + (§DEA);
_1
+Bf T 1<k<N, (50)
« k_2 2 k_% k_; B
BD; u; =0u; *+Bf. *, 1<i<M-1, 1<k<N,
(51)
o k— 2 k-1 h,_ k1 H Comore 1K
BDZuy, * = **5XUM—2% a E(fX)M i 90 (Foo)m * + (0 DEf)m °



3.2 Neumann boundary problem for time fractional
diffusion-wave equation

Theorem (Stability) [ Ren and Sun 2013 JSC]

The finite difference schemes (48)-(49) and (50)-(53) are both
unconditionally stable to the initial values v, ¢ and the right hand
term f.



3.2 Neumann boundary problem for time fractional
diffusion-wave equation

Theorem (Stability) [ Ren and Sun 2013 JSC]

The finite difference schemes (48)-(49) and (50)-(53) are both
unconditionally stable to the initial values v, ¢ and the right hand
term f.

Theorem (Convergence) [Ren and Sun 2013 JSC]

Assume that u(x, t) € Ci,":’([a, b] x [0, T]) is the solution of

(45)-(47) and {uf | 0 < i< M, 0 < k < N} is solution of the
finite difference scheme (48)-(49), respectively. Then there exists a
positive constant C such that

U — uF||loo < C(T372 + H?), 0< k<N



3.2 Neumann boundary problem for time fractional
diffusion-wave equation

Theorem (Convergence) [Ren and Sun 2013 JSC]

Assume that u(x, t) € Cg,’?([a, b] x [0, T]) is the solution of
(45)-(47) and {uf |0 < i < M, 0< k < N} is solution of the
finite difference scheme (50)-(53), respectively. Then there exists a
positive constant C such that

UK — u¥]|oo < C(r3%+ A%, 0< k<N



3.2 Neumann boundary problem for time fractional
diffusion-wave equation

In (45), let T = 1. In order to test the convergence rate of the
proposed methods, we consider the exact solution of the problem
(45)-(47) as follows

u(x,t) = ex%(1 — x)2t7 72,

Then it can be checked that the corresponding forcing term f(x, t)
and initial conditions ¢(x), ¥(x) are respectively

r
f(x,t)= (fy2+3)tzexx2(1 —x)? — e tT2(2 - 8x 4+ x% +6x> + x%),

and



3.2 Neumann boundary problem for time fractional
diffusion-wave equation

Table: Convergence orders of scheme (48)-(49) and scheme (50)-(53) in
temporal direction with h = 5o

scheme (48)-(49) scheme (50)-(53)
o T es(h,7) Order | ex(h,7) Order
1/10 | 1.148e-3 * 1.148e-3 *

1/20 | 3.549e-4 1.694 | 3.547e-4 1.694
1.3 | 1/40 | 1.096e-4 1.695 | 1.095e-4 1.696
1/80 | 3.392e-5 1.693 | 3.374e-5 1.698
1/160 | 1.058e-5 1.681 | 1.039e-5 1.699
1/10 | 5.201e-3 * 5.201e-3 *

1/20 | 2.096e-3 1.311 | 2.096e-3 1.311
1.7 | 1/40 | 8.499e-4 1.302 | 8.498e-4 1.302
1/80 | 3.452e-4 1.300 | 3.452e-4 1.300
1/160 | 1.403e-4 1.299 | 1.402e-4 1.299




3.2 Neumann boundary problem for time fractional

diffusion-wave equation
Table: Convergence order of scheme (48)-(49) in spatial direction (

T =5k a=11).
h eso(h, T) Order
1/20 2.929e-3 *
1/40 8.485e-4 1.788
1/80 2.281e-4 1.895
1/160 5.915e-5 1.947
1/320 1.507e-5 1.973
Table: Convergence order of scheme (50)-(53) in spatial direction (
T = 15855, @ = 1.1).
h €so(h, T) Order
1/4 3.168e-3 *
1/8 1.960e-4 4.015
1/16 1.221e-5 4.004
1/32 7.620e-7 4.003

1/64 4.677e-8 4.026




3.2 Neumann boundary problem for time fractional
diffusion-wave equation

Table: The maximum norm error and CPU time of two schemes.

scheme (50)-(53)

scheme (48)-(49)

a | N |M ex(h,7) CPUtime(s) | M ex(h,7) CPU time (s)
1.3 | 346 |12 2.605e-5 0.5648 144 5.878e-5 1.8133
681 |16 8.233e-6 1.4255 256 1.894e-5 6.9851
1151 |20 3.370e-6 3.1365 400 7.821e-6 21.0186
1768 |24 1.625e-6 6.3181 576 3.789e-6 53.7504
1.5 | 755 (12 1.742e-5 1.3204 144 4.636e-5 4.5104
1625 |16 5.502e-6 4.0712 256 1.495e-5 21.4531
2947 |20 2.252e-6 10.8390 400 6.177e-6 79.2962
4793 (24 1.086e-6 26.0553 576 2.993e-6  247.9911
1.7 12092 (12 1.061e-5 4.58601 144 3.627e-5 17.4946
5070 |16 3.349e-6 20.1830 256 1.170e-5  122.2289
10073 |20 1.370e-6 ~ 75.9918  |400 4.838e-6  631.5692
17652 (24 6.606e-7  231.0118 |576 2.345e-6 2390.2986




4. Multi-term time fractional diffusion-wave equation

Consider the following two-term time fractional mixed
diffusion-wave equation

EDf (1) + §DFu(x, 1) = T209 0 | ),

O<x<L 0<t<T, (54)
u(x,0) = @1(x), wue(x,0) =p2(x), 0<x<L, (55)
u(0,t) = 1(t), wu(L,t) =10(t), 0<t<T, (56)

where 0 < a1 <1 < a < 2, p1(x), p2(x), ¥1(t), 2(t) and f(x, t)
are known smooth functions.



4. Multi-term time fractional diffusion-wave equation

We established the following spatial fourth order (compact)
difference scheme

J J=1
5 k—1 k—1
=20 T AFT 1<i<M =1, 1<k<N, (57)
u,Q =pi1(x;), 0<i<M, (58)
uf = Y1(te), upp=12(tk), 1<k<N (59)

1 1 k-1 I
rup ? = Tio [5”’/ P - Z( f—j—1— b?—j)‘st“f P - b?—1902(xi)}7

where fig = 7%7I1(3 — a), bY = (k +1)>7% — k¥~
We have proved that



4. Multi-term time fractional diffusion-wave equation

Theorem (Stability) [Zhang, Sun]

The difference scheme (57)-(59) is unconditionally stable to the
initial values 1(x) and ¢2(x) and the right hand term f.



4. Multi-term time fractional diffusion-wave equation

Theorem (Stability) [Zhang, Sun]

The difference scheme (57)-(59) is unconditionally stable to the
initial values 1(x) and ¢2(x) and the right hand term f.

Theorem (Convergence) [Zhang, Sun]

Assume that u(x, t) € CS:‘?([O, L] x [0, T]) is the solution of

(54)-(56) and {u¥ | 0 < i< M, 0< k < N} is the solution of the
difference scheme (57)-(59), respectively. Then, for k7 < T, it
holds that

L .
HekHoo < % 6|-(2 . a) Ta(Tmm{2foz1,3fa} + h4)7 0 < k < N.



4. Multi-term time fractional diffusion-wave equation

Let L =m, T = 1. We consider the exact solution of the problem
(54)-(56) as follows

u(x, t) = ttTortagin x,

Then it can be checked that the corresponding source term f(x, t),
initial and boundary conditions are respectively

rM24+oa1+a) 4 r2+oa+a) 4 1 .
f(x,t) = (—t toyp S - lplten gy +°‘1+a) :
bt [2+a) et a) L > x

and

o(x) =0, Yi(t)=0, uo(t)=0.



4. Multi-term time fractional diffusion-wave equation

Table: Numerical convergence of the difference scheme (57)-(59) in

temporal direction with h =

100"

a1, « T exo(h, T) Orderl
a1 =02, a=17 1/10 4.145e-2 *
1/20 1.707e-2 1.280
1/40 6.969e-3 1.293
1/80 2.833e-3 1.298
a1 =03, a=12 1/10 5.329e-3 *
1/20 1.667e-3 1.677
1/40 5.164e-4 1.691
1/80 1.580e-4 1.700




4. Multi-term time fractional diffusion-wave equation

Table: Numerical convergence of the difference scheme (57)-(59) in
spatial direction with T = 5w

a1, h eso(h, T) Order2
a; =01 a=13 /2 4.074e-3 *
/4 2.413e-4 4.078
/8 1.482¢-5 4.025
/16 9.223e-7 4.006




5.1 ADI methods for 2D time fractional sub-diffusion
equation

Consider the following two-dimensional time fractional
sub-diffusion equation

§DYu(x,y, t) = Au(x,y, t) + f(x,y,1), (x,y)€Q, 0<t<T
6

(60)
u(x,y,0) =(x,y), (x,y)€Q=QUaQ, (61)
u(x,y,t) = o(x,y, t),(x,y) €0Q, 0<t<T, (62)

where 0 < o < 1, A is the two-dimensional Laplacian operator, the
domain Q = (0, L;) x (0, L2), and 99 is the boundary,
o(x,y,t),1(x,y) and f(x,y, t) are known smooth functions.



5.1 ADI methods for 2D time fractional sub-diffusion

equation
Taking two positive integers My, M, let x; = ih; and yJ = jhy with
hi = L1/My and hy = Lo/ M,. Define Qp, = {x;j| 0 < i < M;} and
Qp, = {yj| 0 <j < M}, then the domain Q is covered by
Q, = Qp, X Qp,. For any mesh function
u={uj| 0<i<Mp,0< < My} defined on Qp, x Qp,, denote

1 1
Oty = (5 = Uicj) Oyl

1 1
2 2
Ry = - (Settg g = Oty ), s = /T( Uijey = u—%)'
1
A u“_{ 12(u, 1’J+10UU+U,+1’J) 1<
xUjj —
ujj, i=0 or My, 0<j< My,
1
(U,’J 1—|—10UU+U,’]+1) 1< <M—-1,0< i< M,

Uij, j=0 or My 0<i< M.



5.1 ADI methods for 2D time fractional sub-diffusion
equation

We construct the following L1-ADI scheme and BD-ADI scheme,
respectively, i.e.,

T

Da(u,-’} + ,u25)2<5}2,u3) — Apui = 17, (xi, ;) € Qpy, 1< n <N,

(63)

up = $(xi, Yy ta),  (%i,¥}) € 0, 1< n <N, (64)

u§ = v(x. ), () € Q. (65)
and

_1
DZuj; + Tuéﬁéf,étug 2= Apuy = £, (xi,yj) €2, L<n <N,

T Uij

(66)
ui = ¢(xi, yj  ta), (X, ¥;) € 0, 1 < n <N, (67)
u’oj = w(X’.’yj)7 (Xl'ayj) € Qh. (68)



5.1 ADI methods for 2D time fractional sub-diffusion
equation
Theorem (Stability) [Zhang and Sun 2011 JCP]

The finite difference schemes (63)-(65) and (66)-(68) are
unconditionally stable to the initial value ¢ and the right hand
term f.



5.1 ADI methods for 2D time fractional sub-diffusion
equation
Theorem (Stability) [Zhang and Sun 2011 JCP]

The finite difference schemes (63)-(65) and (66)-(68) are
unconditionally stable to the initial value % and the right hand
term f.

Theorem (Convergence) [Zhang and Sun 2011 JCP]
Assume that the problem (60)-(62) has smooth solution

u(x,y,t) in the domain Q x [0, T] and

{ujil (xi, ;) € 2p, 1 < n < N} be the solution of the difference

schemes (63)-(65) and (66)-(68). Then there exists a positive

constant C such that

U7 — 0"l < C(Fmn 227 4 B2 £ B3), 1< n<N.

A\ Ty (UK — uk, < Crmintite2mel 4 g2 4 p2) 1< < N



5.1 ADI methods for 2D time fractional sub-diffusion

equation
Table: Convergence order of (63)-(65) in temporal direction with

—
h = 500-

a | N  ex(r,h) Order ex(r,h) Order
1/2 | 10 3.4910e-3 * 4.9026e-4 *
20 1.9907e-3 0.8104 1.7394e-4 1.4949
40 1.0823e-3 0.8791 6.0359e-5 1.5270
80 5.7133e-4 0.9217 * *
2/3 |10 1.4331e-3 * 4.0710e-5 *
20 5.9327e-4 1.2724 1.1591e-5 1.8124
40 2.4243e-4 1.2911 4.4132e-6 1.3931
80 9.8870e-5 1.2940 * *
3/4 | 10 3.8502e-3 * 2.3582e-4 *
20 1.7555e-3 1.1331 7.6934e-5 1.6160
40 7.8267e-4 1.1654 2.6593e-5 1.5326
80 3.4449e-4 1.1840 * *




5.1 ADI methods for 2D time fractional sub-diffusion

equation

Table: Convergence orders of scheme (66)-(68) in temporal direction

with h = .
a | N  ex(r,h) Order ex(r,h) Order
1/3 | 10 3.8684e-3 * 1.8001e-4 *
20 1.6437e-3 1.2347 4.5085e-5 1.9973
40 6.7951e-4 1.2744 1.1695e-5 1.9467
80 2.7672e-4 1.2961 * *
1/2 | 10 8.8067e-4 * 2.1851e-5 *
20 3.2549e-4 1.4360 1.7096e-6 3.6760
40 1.1618e-4 1.4862 6.1627e-7 1.4721
80 4.0678e-5 1.5141 * *
2/3 |10 2.2326e-3 * 2.1368e-4 *
20 1.0149e-3 1.1374 6.8734e-5 1.6364
40 4.4422e-4 1.1920 2.1960e-5 1.6461
80 1.8953e-4 1.2288 * *




5.1 ADI methods for 2D time fractional sub-diffusion

equation

Table: Convergence orders in spatial direction ( 7 = 5555, & = 0.5).
M €o(T, h) Order

difference scheme(63)-(65) 4 5.1273e-3 *
8 1.2844e-3 1.9972
16 3.2219e-4 1.9951
32 8.1568e-5 1.9818

difference scheme (66)-(68) 4 6.0514e-3 *
8 1.5096e-3 2.0031
16 3.7696e-4 2.0017
32 9.3984e-5 2.0039




5.2 ADI methods for 2D time fractional diffusion-wave
equation

Consider the following two-dimensional time fractional
diffusion-wave equation

SDlu(x,y, t) = Du(x,y, t) + f(x,y,t),(x,y) €Q 0< t< T,

(69)
u(x,y,0) = ¢(x,y), ue(x, y,0) = ¢(x,y), (x,y) € 1 = QU IQ,

(70)
ulx,y,t) = o(x,y,t),(x,y) €0Q, 0<t<T, (71)

where 1 < v < 2, A is the two-dimensional Laplacian operator, the
domain Q = (0, L;) x (0, L2), and 99 is the boundary,

o(x,y, t),(x,y),d(x,y) and f(x,y,t) are known smooth
functions.



5.2 ADI methods for 2D time fractional diffusion-wave

equation

We constructed the following Crank-Nicolson scheme

D;Yug._% — AhUZ-_% _ r(34_7)7_1+75)2<5}2/5tui’1’._5 + fi;_%v
(xi,yj) € 2, 1< n <N, (72)

u"rj" = ¢(xi,yj, tn),  (Xi,y;) €0Qp, 1< n< N, (73)

uf = v(a,y),  (x1,5)) € . (74)

The difference scheme (72) can be decomposed into the ADI form.



5.2 ADI methods for 2D time fractional diffusion-wave
equation

Theorem 10(Stability) [Zhang, Sun and Zhao 2012 SINUM]

The finite difference scheme (72)-(74) is unconditionally stable to
the initial values v, ¢ and the right hand term f.



5.2 ADI methods for 2D time fractional diffusion-wave
equation

Theorem 10(Stability) [Zhang, Sun and Zhao 2012 SINUM]

The finite difference scheme (72)-(74) is unconditionally stable to
the initial values v, ¢ and the right hand term f.

Theorem 11(Convergence) [Zhang, Sun and Zhao 2012
SINUM]

Assume that the problem (69)-(71) has smooth solution
u(x,y, t) in the domain Q x [0, T] and
{uf| (xi,yj) € Qn, 1 < n < N} be the solution of the difference
schemes (72)-(74). Then there exists a positive constant C such
that

U™ — u"|py, S C(P37 + M3+ h3), 1<n<N.



5.2 ADI methods for 2D time fractional diffusion-wave
equation

We presented the following compact scheme

Ay DY = (4,82 + A2 — =) irs2gs,
Xy i yUx XVy J5j 4 xCyYtsy

Ty
_1
+Ax¢4yf;1n 2, (X,',yj) € Q;” 1<n< N’ (75)
uf = ¢(xi, ¥js tn), (X0, ¥;) € 0, 1< n <N, (76)
uf =06, y5), (%0 ¥5) € Q- (77)

The difference scheme (75) can be decomposed into the ADI form.



5.2 ADI methods for 2D time fractional diffusion-wave
equation

Theorem 12(Stability) [Zhang, Sun and Zhao 2012 SINUM]

The finite difference scheme (75)-(77) is unconditionally stable to
the initial values v, ¢ and the right hand term f.



5.2 ADI methods for 2D time fractional diffusion-wave
equation

Theorem 12(Stability) [Zhang, Sun and Zhao 2012 SINUM]

The finite difference scheme (75)-(77) is unconditionally stable to
the initial values v, ¢ and the right hand term f.

Theorem 13(Convergence) [Zhang, Sun and Zhao 2012
SINUM]

Assume that the problem (69)-(71) has smooth solution
u(x,y, t) in the domain Q x [0, T] and
{ul| (xi,yj) € Qn, 1 < n < N} be the solution of the difference
scheme (75)-(77). Then there exists a positive constant C such
that

U™ — u"|py, S C(r377 + 1+ h3), 1<n<N.



5.2 ADI methods for 2D time fractional diffusion-wave
equation

In (36)-(38), let Q = (0, 7) x (0, ),

r
f(x,y,t) =sinx siny [(:)’;_'y)tz _2t2_ﬂy]7

u(x,y,0) =0, u(x,y,0) =0, o(x,y,t) = 0.
Then the exact solution is

u(x,y,t) =sinx siny t>77.



5.2 ADI methods for 2D time fractional diffusion-wave
equation

Table: Convergence order of difference scheme (72)-(74) in temporal

) . . o
direction with h = 506 -

scheme (72)-(74)  scheme (75)-(77)
07 T es(h,7)  Order | ex(h,7)  Order
1/5 | 2.7052e-2 * 2.7048e-2 *

1/10 | 8.4520e-3 1.6784 | 8.4482e-3 1.6788
1.25 | 1/20 | 2.5914e-3 1.7056 | 2.5877e-3 1.7070
1/40 | 7.8867e-4 1.7162 | 7.8500e-4 1.7209
1/80 | 2.4108e-4 1.7099 | 2.3742e-4 1.7253
1/5 | 1.9341e-1 * 1.9340e-1 *

1/10 | 8.1579e-2 1.2454 | 8.1577e-2 1.2454
1.75 | 1/20 | 3.4381le-2 1.2466 | 3.437%e-2 1.2466
1/40 | 1.4485e-2 1.2470 | 1.4484e-2 1.2471
1/80 | 6.1002e-3 1.2477 | 6.0986e-3 1.2479




5.2 ADI methods for 2D time fractional diffusion-wave
equation

Table: Convergence order scheme (72)-(74) in spatial direction (
v=1.1).

h €xo(T, h) Order
scheme (72)-(74) /4 1.5865e-2 *
scheme (r =1/1000) | 7/8  3.9882¢-3  1.9921
/16 0.9877e-4 1.9975
/32 2.5019¢-4 1.9971
scheme (75)-(77) /4 5.0632e-4 *
scheme (7 = 1/10000) /8 3.1104e-5 4.0249
/16 1.9421e-6 4.0014
/32 1.2814e-7 3.9218




5.2 ADI methods for 2D time fractional diffusion-wave
equation

Table: The maximum norm error and CPU time of two schemes.

scheme (75)-(77)

scheme (72)-(74)

v | N M ex(r,h) CPU time(s) | M ex(r,h) CPU time(s)
1.25 | 24 |4 2.1782e-3 0.0470 16 2.5190e-3 0.2650
60 |6 4.5846e-4 0.4220 36 5.3406e-4 3.4380
116 |8 1.4733e-4 1.7190 64 1.7218e-4  21.4370
193 |10 6.0965e-5 5.6250 100 7.1313e-5  91.0620
1.5 | 40 |4 3.9333e-3 0.1100 16 4.1774e-3 0.4530
118 |6 8.0156e-4  0.9060 36 8.5395e-4  6.8910
256 |8 2.5323e-4 5.0780 64 2.7022e-4  50.7810
464 |10 1.0412e-4  20.7810 |100 1.1115e-4  252.4060
1.75 | 84 |4 5.7572e-3  0.2340 16 5.9206e-3  0.9370
309 |6 1.1535e-3 3.5320 36 1.1872e-3  19.5630
776 |8 3.6654e-4  30.2970 |64 3.7736e-4  197.9530
1585 |10 1.5035e-4 178.5930 |100 1.5480e-4 1680.1100




6. Conclusion

In this review, | report some works on the difference method for
the time fractional differential equations. At first, two discrete
fractional numerical differential formulae with their truncation
errors are presented. Then some difference schemes are
constructed for the Dirichlet problem, Neumann problem of the
subdiffusion equation and diffusion-wave equation, respectively.
For the 2d problem, we concentrate on the ADI schemes. At last
the multi term problems are considered. Both spatial second order
and fourth order difference schemes are established for each
problem. The stability and convergence of the difference schemes
are proved. The main tool for analyzing the difference schemes is
the energy method. Some numerical examples are provided and
the numerical results are accordance with the theoretical results.
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