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Fractional derivative

* Definition of fractional integral of a certain function w(t) (Podlubny, 1998):

L owE)
oD w(t) = @) (;“(t—r)_“” dt; for a>0

* (t-1)*% power law decay kernel
* I'(a): gamma function

* -a: order of the fractional integral

Fractional derivative

* Fractional derivative representation

* Riemann-Liouville fractional derivative

1 d™ '« w(r)
T(m-ca) dt” (;[(t — )t

X DEw(t) = dr; for m—1<a<m

* Caputo fractional derivative (Caputo, 1967)
1 ’I w™ (1)
T(m—a)y(—7)*"™"

CDw(t) = dr;, for m—1<a<m

Remark: the Caputo representation accommodates vibration analyses, as the

initial conditions involve integer order derivatives.



Fractional derivative

Integral transforms of a Caputo fractional derivative

A A
* Fourier transform: o DIw(t) = (iw)* w(t)

= m-1
* Laplace transform: o D w(t) = s“w(t) - kZ s* " w®(0)
=0

w®(0): derivative of order £ O N

Governing equation

Nonlinear fractional PDE with stochastic forcing function

o*v(x,1) o™ v(x,1) O*v(x,1)
+pA —aE =

EI
oxt ot

+c,0;v(x,t)— N q(x,t)

v(x,f) = displacement
E = elastic modulus
I=moment of inertia

p =mass density i P
A = cross-sectional area
c:damping A\\\ $\\-—“—/A

a = order of the fractional derivative (ot
q(x,t) = load Vo)

Remark: in this context the fractional term can describe the effect of an external

damping or the material viscoelastic properties (Bagley and Torvik, 1983).
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Governing equation

Nonlinear fractional PDE with stochastic forcing function
o*v(x,1) o*v(x,1) P 0*v(x,1)
EI—63T+pA v +c,0,v(x,t)- N P = q(x,t)

Nonlinear term N arising from the
moderately large deflection of the beam

NE_A(@(_L)jdx T
2L 3\ o

Governing equation

Assumptions on the load g(x,?):

*Separable, thatis:  q(x,?) = p(x)f ()

*Space-wise deterministic

*Time-wise random: f{¢) is a stationary Gaussian process with power spectral

density function S(w) and autocorrelation function
< fl-1)ft—7,)>= [S(w)explia(r, —7,)ldw




Statistical Linearization

The solution of the nonlinear fractional PDE is sought via an optimal equivalent
linear system. The equivalence is posed in the time domain according to a certain

error criterion. Then, the solution of the linear system is readily estimated.

Statistical Linearization

Representation of the solution by the linear modes of vibration of the beam:

y(x,1) = Zw O, (x)

Properties of the modes:

*Compatible with the eq. EID) = pda}®,
L
*Orthogonality: [©,®,d=Ls,
. 0

n

L L
*Define:  K,, =K, = [©,®,dsthen: @, 0)dv=-K,,
0 0
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Statistical Linearization

Nonlinear equations associated to the amplitudes wm(t):

E ZZZW"W,W K,K,, =

ZPLZ n |

on c o 2
W, +—A°D' w,, +o,w, +

Equivalent linear equations:

v'f/m+ o DfwW,, +o w ; Jor m=1,2,...
,oA

eq,m’"m

I
where P, = [p(x)®,, (x)dx
0

-11-

Statistical Linearization

The equivalent stiffness is estimated by solving the minimization problem:

& g,f, >=0; for m=1.2,..

where ¢,, are errors given by the equations:

Ep =0, Wy — L2 ZZZW"W,WJKUKM opW,; for m=12,.
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Statistical Linearization

After a few algebraic manipulations it is proven that

E
2 2
w,, . =0, + > <w,w,ww,>; for m=12,.
2,0L2<w>;/;'jm" LRI ’

eq,m m

The average values are estimated by invoking the linear input-output relationships

m

h(©) == [H, (@)™ do H, @)= [h,@0)e ™ dt
2z A

and the transfer function of a fractional linear system

1

Hy(@)= -0’ + fiw)* +a’

e

ae,m

Statistical Linearization

Further, by recalling that
<SU=r)fU-1) f(t-1)f(t-7,)>=
=< fU-t)f-1,)>< flt-1)f(t—7,)>+
+<fU=T)fU-1)>< flt-1)f(1-7,)>+
+<f(t—T,)f(t—T4)><f(t—1'2)f(t—‘t'3)>

The average values are obtained:

<w? >_( Z L] [H,,(-0)S(0)H,, (0)dw

P,PPF
< W, W,W,W, >= (pAL)4 (SmnS,j +Sm,Snj +SmJSm)

where §,, = T[Hm (w)S(w)H ,(~w)dw




Statistical Linearization

2 _ 2 E 1
o = Ot T B Ky KB Sy 4 505, 45,8, Jor m=12.

The equivalent stiffness are calculated iteratively, as S, depends on W, At the

first iteration it is posed @,,, =®,; for m=12,..

The iteration is performed until convergence is reached.
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Statistical Linearization

Standard deviation of the Vertical displacement

o2 (x) =<v*(x,1) >—( AL) j S(a))ZZCD (x)®,(x)P,P,H, (0)H,(-w)dw

Power spectral density of the vertical displacement
Sv(‘x’a))= S(w)zzq)m(x)q)n(x)PmPnHm(a))Hn(—m)

1
(pAL)*




Monte Carlo simulation

The PDE is integrated numerically by the Analog Equation Method (Babouskos
and Katsikadelis, 2010; Katsikadelis, G.C. Tsiatas, 2003).

The method is based on the replacement of the original equation by an “analog”
equation with certain favorable characteristics. The logic of the AEM is exploited
twice: first, the nonlinear fractional PDE is converted to a set of nonlinear
fractional ODESs. Then, they are replaced again by a single term fractional

differential equations

. o*v(x, 1) 0*v(x,1) N 0% v(x,t)
Given the PDE: EJ T+ oA v, +¢, 0, v(x,t)— Nax—2 =q(x,1)
As it is of the fourth order with respect to x, it replaced by
Vo = 0(x,1)

In this context, the time variable is a parameter.

-17-

Monte Carlo simulation

The equation
Vo = 0(x,1)

is solved by a Boundary Integral Equation Method (BIEM).

Integral representation of the solution:

15
V=c,textc,xt Hex’ + _[G(x, Eb(E,0)dé
0

where ¢, are time-dependent coefficients, and G(x,¢&) is the source function

G=%Ix—§l(x—«§)2
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Monte Carlo simulation

Discretization of the beam

Nodal points
12 /) :
loeoeolelelelelel—

X

—

L
Resulting discretized solution

N
v=c, +ox+c,x’ +c,x° +leb(§j,l‘)J.G(X,§j)d§
= J

By collocating each displacement to the equation of motion we have

EJb(xj,t)+pAi [G(x,,6)d¢ - b(&,.0)+

N e 4 forj=1,...N
+e3. [Gx, 604 o DIbED =57 Fy(,6) = 4(x 1)

k=t

Monte Carlo simulation

In a matrix notation

PAG-B(0)+G-y D b(0)+ EIb(0)— = FG(1,G) = 4(0)

F(b(2),G) = nonlinear vector function encapsulating the nonlinearities.
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Monte Carlo simulation
PAG -B(t) + ¢ Gy DF b(t) + EIb(f) - %E@@, G)=4(t)

The AEM is used for the second time by replacing this set of nonlinear fractional

ODEs by the set of equations (Katsikadelis, 2009)

pAG - plt) +¢G- B(®) + EIB0) - 2 F(b(1),6) = 1)

b(t) = p(t)
oD b(1) = p(t)

This set can be converted to a system of nonlinear algebraic equations!
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Monte Carlo simulation

By taking the Laplace transform of the last equations

b(t) = p(t) b =35 +-b0)+—40)

) A
B e TN
oD b(t) = p(¥) b + S—HWQ(O)

L
S(Z

s

k=0
By taking the inverse Laplace transform of the first one and of the one obtained
by equating the right hand sides of both equations:
b(£) = b(0) +b(0) + [p(z)(¢ ~7)d7
0

e N 1
I'2-a) I'Q-«a

(1) =[2~ ceil (a)]b(0) [p@)t -2) " de
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Monte Carlo simulation

The following system of nonlinear algebraic equations is obtained in the time

domain:

pAg-Bn +cg-zn +EIb, —%E(gn,g) =q

1 . mp +p 1 1
—=APp +b,=b,+th,+Y =2 =il i~ |Af? +—Af?
47 2a T2 =20 2 z, 2 ( 2) 4o B

=_n-1

1 At (e
_ Em p =[2- cell(a)]b ro- a)
At*e = 4 c1Ye (e l At
e -are- a)g P A I ) ]+2(2—a)r<2—a)£"-'

The unknonwn Bn,_ﬁ_n,]zn can be found at each time step by standard Newton-

Raphson iterations
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Reliability of the analytical solution

Comparison between the response obtained by statistical linearization and Monte

Carlo simulations.

Assumptions:
*uniform load p(x)=p

*spectrum of the excitation: coloured white noise with expression
Cw*
S(w) =
[0 = k)” + (W) IW* —k,)? + (e, )]
*simply supported beam, in which:
x’m? V2L

®, =2sin(mx/L) K, - L Om Pa= Pl (-D")

*order of the derivative:

a=0.5

-24-



Reliability of the analytical solution

Standard deviation of the response
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Statistical linearization (continuous line), Monte Carlo data (circles), linear

solution obtained by neglecting the nonlinear term (dotted line)
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Reliability of the analytical solution

Power spectral density of the response at the mid-span of the beam
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Statistical linearization (continuous line), Monte Carlo data (circles), linear

solution obtained by neglecting the nonlinear term (dotted line)
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Closure

* An approximate method has been developed for determining
the solution of nonlinear partial differential equations and
endowed with fractional derivative terms and stochastic
forcing terms

* The method has been based on the concept of “an equivalent
linear” PDE the parameters of which have been determined
iteratively

* The lateral vibrations of a nonlinear beam have been
considered as a paradigm problem

* Areliability of the proposed method has been assessed by
extensive Monte Carlo simulations

* A challenging mathematical problem can be the derivation of
a priori error estimates of the proposed procedure



