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Abstract

In a heterogeneous environment, the coefficients of the diffusion
equation will naturally vary in space.

Pearson diffusions form a tractable class of variable coefficient
diffusion models with polynomial coefficients.

Fractional Pearson diffusions are governed by the corresponding
time-fractional diffusion equation.

We present the explicit formula for the covariance function of
fractional Pearson diffusions in steady state.



Acknowledgments

Joint work with

Nikolai N. Leonenko, School of Mathematics, Cardiff University

Mark M. Meerschaert, Department of Statistics and Probability,
Michigan State University

MMM was partially supported by NSF grants DMS-1025486 and
DMS-0803360, and NIH grant R01-EB012079-01.
NNL was partially supported by grant of the European commission
PIRSES-GA-2008-230804 (Marie Curie).



Diffusion and fractional diffusion
I Fractional differential equations are an important and useful

tool in science and engineering (Mainardi (1997), Podlubny
(1999), Magin (2006), Scalas (2006), Sabatier et al. (2007),
Baleanu et al. (2012)).

I There are some interesting and fundamental connections
between fractional calculus and probability (Meerschaert and
Sikorskii (2012)).

I The diffusion equation with constant coefficients governs
Brownian motion, the long-time scaling limit of a simple
random walk (Einstein (1905)).

I If the first time derivative is replaced by a Caputo fractional
derivative of order 0 < α < 1, the result is a fractional
diffusion equation that governs the scaling limit of a
continuous time random walk (Meerschaert and Scheffler
(2004), Chen (2006)).

I The resulting sub-diffusive process spreads at a slower rate
tα/2 than the usual rate t1/2 for a traditional Brownian
motion.



Diffusion equation with coefficients varying in space

I In a heterogeneous environment, the coefficients of the
diffusion equation will naturally vary in space.

I Pearson diffusions form a tractable class of variable coefficient
diffusion models with polynomial coefficients.

I They govern a class of Markov processes whose steady state
distributions belong to the class of Pearson distributions
(Pearson (1914)).

I In a fractional Pearson diffusion, the time variable is replaced
by an inverse α-stable subordinator.



Pearson diffusions
Consider the stochastic differential equation

dX1(t) = µ(X1(t))dt + σ(X1(t))dW (t)

where W (t) is a standard Brownian motion.

In the case

µ(x) = a0 + a1x and D(x) =
σ2(x)

2
= d0 + d1x + d2x2

the process X1(t) is called a Pearson diffusion.

If σ(x) is a positive constant, this is the Ornstein-Uhlenback
process.

If d2 = 0, this is the Cox-Ingersoll-Ross (CIR) process, which is
used in finance.

The study of Pearson diffusions began with Kolmogorov (1931),
and Wong (1964), and continued recently.



Forward and backward equations

Let p1(x , t; y) denote the conditional probability density of
x = X1(t) given y = X1(0), i.e., the transition density of this
time-homogeneous Markov process with the state space (l , L).
This transition density solves the Kolmogorov forward equation
(Fokker-Planck equation)

∂p1(x , t; y)

∂t
= − ∂

∂x
[µ(x)p1(x , t; y)] +

1

2

∂2

∂x2

[
σ2(x)p1(x , t; y))

]
and the backward equation

∂p1(x , t; y)

∂t
= µ(y)

∂p1(x , t; y)

∂y
+
σ2(y)

2

∂2p1(x , t; y)

∂y 2

with the same initial condition p1(x , 0; y) = δ(x − y).

Then we say that X1(t) is the stochastic solution to the forward
and the backward equations.



Caputo fractional derivative
The Caputo fractional derivative of order 0 < α < 1, defined by

∂αf (t)

∂tα
=

1

Γ (1− α)

∫ t

0
f ′ (τ) (t − τ)−α dτ,

has Laplace transform sαf̃ (s)− sα−1f (0), where
f̃ (s) =

∫∞
0 e−st f (t) dt .

The stochastic solution of the time-fractional forward equation

∂αpα(x , t; y)

∂tα
= − ∂

∂x
[µ(x)pα(x , t; y)] +

1

2

∂2

∂x2

[
σ2(x)pα(x , t; y))

]
and the time-fractional backward equation

∂αpα(x , t; y)

∂tα
= µ(y)

∂pα(x , t; y)

∂y
+
σ2(y)

2

∂2pα(x , t; y)

∂y 2

with point source initial condition pα(x , 0; y) = δ(x − y) is called a
fractional Pearson diffusion and denoted by Xα(t) (Leonenko,
Meerschaert, Sikorskii (2013)).



Fractional time derivative models

I The fractional time derivative models particle sticking and
trapping (Kochubei (1989), Meerschaert and Scheffler
(2004)).

I Because particle resting times are distributed like a power law,
Xα(t) is no longer a Markov process. Hence the conditional
probability density pα(x , t; y) of x = X1(t) given y = X1(0) is
not enough to determine the process.

I We specify the process and derive an explicit formula for the
correlation between Xα(t) and Xα(s) in terms of
Mittag-Leffler functions.



Generator

Let m(x) be the steady state distribution of X1(t). The generator
associated with the backward equation

Gg(y) =

[
µ(y)

∂

∂y
+
σ2(y)

2

∂2

∂y 2

]
g(y)

has a set of eigenfunctions GQn(y) = −λnQn(y) with eigenvalues
0 = λ0 < λ1 < λ2 < · · · that form an orthonormal basis for
L2(m(y) dy).



Eigenfunctions of the generator

If d1 = d2 = 0 and d0 > 0 (σ2(y) is constant), then m(y) is a
normal density and Qn are Hermite polynomials.

In the case d2 = 0 (σ2(y) is a first degree polynomial), m(y) is a
gamma density and Qn are Laguerre polynomials.

For D ′′(y) < 0 with two positive real roots, m(y) is a beta density
and Qn are Jacobi polynomials.

In the remaining cases, the spectrum of G has a continuous part,
and some moments of X1(t) do not exist.

In every case, m(y) is one of the Pearson distributions. We will
assume one of the three cases (Hermite, Laguerre, Jacobi) so that
all moments exist.



Solving backward equation

Assume a solution p1(x , t; y) = f (t)φ(y) to the backward equation
and separate variables to see that

df (t)

dt
ϕ(y) = f (t)Gϕ(y) or

1

f (t)

df (t)

dt
=
Gϕ(y)

ϕ(y)
:= −λ

so that f (t)φ(y) = e−λntQn(y) solves the backward equation for
any n ≥ 0.

Then any linear combination
∑

n bne−λntQn(y) is also a solution,
with initial condition g(x) =

∑
n bnQn(x), where

bn = 〈g ,Qn〉L2(m(x) dx) :=

∫
g(x)Qn(x)m(x) dx ,



Solving backward equation

It follows that

∞∑
n=0

bne−λntQn(y) =
∞∑

n=0

(∫
g(x)Qn(x)m(x) dx

)
e−λntQn(y)

=

∫ (
m(x)

∞∑
n=0

e−λntQn(x)Qn(y)

)
g(x) dx ,

and hence

p1(x , t; y) = m(x)
∞∑

n=0

e−λntQn(x)Qn(y)

is the transition density of X1(t), i.e., the point source solution to
the backward equation and also to the forward equation.



Solving fractional backward equation

Since the time-fractional backward equation is a fractional Cauchy
problem of the form

∂αpα(x , t; y)

∂tα
= Gy pα(x , t; y),

a general semigroup result (Baeumer and Meerschaert (2001))
implies that

pα(x , t; y) =

∫ ∞
0

p1(x , u; y)ft(u) du

where

ft(x) =
t

α
x−1− 1

α gα(tx−
1
α ),

and gα(t) is the probability density of a stable subordinator with
Laplace transform g̃α(s) = exp(−sα).



Defining fractional Person diffusion process

If D(u) is the standard stable subordinator, a strictly increasing
stochastic process with stationary independent increments such
that D(1) has probability density gα, then the inverse stable
subordinator

Et = inf{u > 0 : D(u) > t}

has density ft .

Then it follows that

pα(x , t; y) =

∫ ∞
0

p1(x , u; y)ft(u) du

is also the conditional probability density of x = Xα(t) given
y = Xα(0), where Xα(t) := X1(Et) and the time change Et is
independent of the outer process X1(t).



Sub-diffusion

Since Et has the same distribution as tαE1, the fractional Pearson
diffusion Xα(t) is a kind of sub-diffusion, where particles move
along the same trajectories, but more slowly than the Pearson
diffusion X1(t).

Bingham (1971) shows that∫ ∞
0

e−suft(u) du = Eα(−stα) :=
∞∑

j=0

(−stα)j

Γ(1 + αj)

using the Mittag-Leffler function.



Transition density representation

The transition density has the following representation:

pα(x , t; y) =
∞∑

n=0

m(x)Qn(x)Qn(y)

∫ ∞
0

e−λnuft(u) du

= m(x)
∞∑

n=0

Eα(−λntα)Qn(x)Qn(y).

An alternative proof in Leonenko, Meerschaert, Sikorskii (2013)
uses separation of variables, and the fact that Eα(−λtα) is an
eigenfunction of the Caputo derivative with eigenvalue −λ
(Mainardi and Gorenflo (2000)).



Lemma

For the three classes of fractional Pearson diffusions (OU, CIR,
Jacobi) with invariant density m and system of orthonormal
polynomials {Qn, n ∈ N}, for any 0 < α < 1, the series

pα(x , t; y) = m(x)
∞∑

n=0

Eα (−λntα) Qn(y)Qn(x)

where Eα is Mittag-Leffler function, converges for fixed t > 0,
x , y ∈ (l , L).



Strong solution of fractional backward equation

Suppose that the function g ∈ L2(m(x)dx) is such that
∑

n gnQn

with gn =
∫ L

l g(x)Qn(x)m(x)dx converges to g uniformly on finite
intervals [y1, y2] ⊂ (l , L). Then the fractional Cauchy problem

∂αu(t; y)

∂tα
= Gu(t; u) = µ(y)

∂u(t; y)

∂y
+

1

2
σ2(y)

∂2u(t; y)

∂y 2
(1)

with initial condition u(0; y) = g(y) has a strong solution
u = u(t; y) given by

u(t; y) = uα(t; y) =

∫ L

l
pα(x , t; y)g(x)dx =

∞∑
n=0

Eα (−λntα) Qn(y)gn.

(2)
The series in (2) converges absolutely for each fixed t > 0,
y ∈ (l , L), and (1) holds pointwise.



Strong solution of the fractional forward equation

Suppose that the function f /m ∈ L2(m(x)dx), and
∑

n fnQn with

fn =
∫ L

l f (y)Qn(y)dy converges to f /m uniformly on finite
intervals [y1, y2] ⊂ (l , L). Then the fractional Cauchy problem

∂αu(x , t)

∂tα
= Lu(x , t) = − ∂

∂x
[µ(x)u(x , t)] +

1

2

∂2

∂x2

[
σ2(x)u(x , t)

]
(3)

with the initial condition u(x , 0) = f (x) has a strong solution
u = u(x , t) given by

u(x , t) = uα(x , t) =

∫ L

l
pα(x , t; y)f (y)dy

= m(x)
∞∑

n=0

Eα (−λntα) Qn(x)fn.

(4)

The series in (4) converges absolutely for each t > 0, x ∈ (l , L),
and equation (3) holds pointwise (u is a strong solution).



Correlation function

If the time-homogeneous Markov process X1(t) is in steady state,
then its probability density m(x) stays the same over all time.

We will say that fractional Pearson diffusion is in steady state if it
starts with the distribution m(x). The fractional Pearson diffusion
in steady state is first order stationary, i.e., Xα(t) has the same
probability density pα(x , t) = m(x) for all t > 0. Indeed

pα(x , t) =

∫
pα(x , t; y)m(y )dy

=

∫ ∫ ∞
0

p1(x , u; y)ft(u)du m(y)dy

=

∫ ∞
0

m(x)ft(u) du = m(x).



Correlation function continued

Thus the fractional Pearson diffusion in steady state has mean
E[Xα](t) = E[X1(t)] = m1 and variance
Var[Xα(t)] = Var[X1(t)] = m2

2 which do not vary over time.

The stationary Pearson diffusion has correlation function

corr[X1(s),X1(t)] = exp(−θ|t − s|)

where the correlation parameter θ = λ1 is the smallest positive
eigenvalue of the generator.

Thus the Pearson diffusion exhibits short range dependence, with a
correlation function that falls off exponentially.



Theorem 1

Suppose that X1(t) is a Pearson diffusion in steady state. Then
the correlation function of the corresponding fractional Pearson
diffusion Xα(t) = X1(Et), where Et is the standard inverse α-stable
subordinator independent of X1(t), is given by

corr[Xα(t),Xα(s)]

= Eα(−θtα) +
θαtα

Γ(1 + α)

∫ s/t

0

Eα(−θtα(1− z)α)

z1−α dz

for t ≥ s > 0, where Eα(·) is the Mittag-Leffler function.



Idea of proof

Write

corr[Xα(t),Xα(s)] = corr[X1(Et),X1(Es)]

=

∫ ∞
0

∫ ∞
0

e−θ|u−v |H(du, dv),

a Lebesgue-Stieltjes integral with respect to the bivariate
distribution function H(u, v) := P[Et ≤ u,Es ≤ v ] of the process
Et .



Idea of proof continued

To compute the integral, we use the bivariate integration by parts
formula (Gill et al. (1995))∫ a

0

∫ b

0
F (u, v)H(du, dv) =

∫ a

0

∫ b

0
H([u, a]× [v , b])F (du, dv)+

+

∫ a

0
H([u, a]× (0, b])F (du, 0)

+

∫ b

0
H((0, a]× [v , b])F (0, dv)

+ F (0, 0)H((0, a]× (0, b]).

with F (u, v) = e−θ|u−v | and infinite limits of integration.



Idea of proof continued

The application of bivariate integration by parts gives∫ ∞
0

∫ ∞
0

F (u, v)H(du, dv) =

∫ ∞
0

∫ ∞
0

P[Et ≥ u,Es ≥ v ]F (du, dv)

+

∫ ∞
0

P[Et ≥ u]F (du, 0)

+

∫ ∞
0

P[Es ≥ v ]F (0, dv) + 1.

Analysis of the three integrals leads to the formula stated in the
Theorem.



Asymptotics of the correlation function
To determine the asymptotics of the correlation function, fix s > 0
and recall that

Eα(−θtα) ∼ 1

Γ(1− α)θtα
as t →∞.

Then

Eα(−θtα(1− sy/t)α) ∼ 1

Γ(1− α)θtα(1− sy/t)α

as t →∞ for any y ∈ [0, 1]. Using the dominated convergence
theorem we get

θαtα

Γ(1 + α)

∫ s/t

0

Eα(−θtα(1− z)α)

z1−α dz

∼
(s

t

)α 1

Γ(1 + α)Γ(1− α)

as t →∞.



Asymptotics of the correlation function continued

Combining the two terms, for any fixed s > 0 we have

corr(Xα(t),Xα(s)) ∼ 1

tαΓ(1− α)

(
1

θ
+

sα

Γ(α + 1)

)
as t →∞.

Recall that stationary Pearson diffusions exhibit short range
dependence, since their correlation function falls off exponentially
fast.

However, the correlation function of a fractional Pearson diffusion
falls off like a power law with exponent α ∈ (0, 1) equal to the
order of the fractional derivative in time, and so this process
exhibits long range dependence.



Remarks
In contrast to a Pearson diffusion in steady state, a fractional
Pearson diffusion is not stationary.

Since fractional Pearson diffusions are not Markovian, neither the
governing fractional backward equation nor the corresponding
fractional forward equation uniquely determine the process.

The joint distribution of the inverse stable subordinator Et at
multiple times has recently been computed in Meerschaert and
Straka (2012), and in principle, this can be used to give a different
proof of the expression of the correlation. However, the resulting
integrals do not seem tractable.

For diffusions with constant coefficients, there has been some work
on identifying and solving the governing equations of the joint
density for multiple times (Baulle and Friedrich (2007),
Meerschaert and Straka (2012b). It would be interesting to extend
this work, to obtain the governing equations for fractional Pearson
diffusions at multiple times.
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