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Introduction

We consider the long time integration of the time fractional differential
equation (TFDE),

{ oDfu(t) = Mu(t) + f(t), te, O

u(0) = uyg,

where A € C. (Dgu(t) is the Caputo derivative of order a of function w,

_,d"u(t) 1 ¢ g d™u(s)
D L pDe—n —_ _ \n—1l-a
oDFu(t) & oD 8 = s [ st Stas,

where n is an integer and o € (n — 1,n].
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Challenges:

insure high accuracy

reduce computational cost
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Challenges:

insure high accuracy

reduce computational cost

Solutions:
high order spectral element method

parallel-in-time (parareal) method
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Spectral element method for TFDE
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Spectral collocation method based on Jacobian polynomial

Denote J;’b(t) the j-th order Jacobi polynomial with index (a,b) defined
on [—1,1].
{J]'-l’b(t)}é\’:O satisfies the three terms recurrence relation:

Jg(t)
JPt) = (a+b+2)t + (a—b),
Tih () = (AP°t — BP")JH () — CPPT5 (1), 1<i< N -1,

b b b .
where A?” B%° C%"” are known coefficients.
j P Y
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Fractional derivative of Jacobian polynomial

Consider the fractional integral of Jacobi polynomials

a,b,a —a 7a 1
T & DTt (t)

t

- _ - t— a—qu,b d
e [ = s
Following [C. Li, F. Zeng, and F. Liu, 2012, FCAA], {J“ba() o
satisfies the three term relation:

~ 1)«
Jg,b,a(t): (t+ )

T(a+1)
2 1 1a+1 _ N
Jf’ba(t):a+b+ t(t+1) _a(t—i— ) a—b
2 Tlat1l) = D(a+2)
AabJJ(l+b1a()

5 e (F
BabJa,b,a()+Cab aba( )+Dab(t+1)
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Fractional derivative of Jacobian polynomial

Using the relation

dm
JoP

TR = LT, mz g, meN,

Jm<j—m

the fractional derivative of a Jacobi polynomial can be expressed as

(JPN @) £ DRI () = din JIETY), n—1<a<n.

! 2)
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Spectral collocation method

Assume u(t) is a polynomial of degree no greater than V.
Then we have

Hence, the fractional derivative of u(t) is expressed as

N
D) =) (7)),
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Matrix form

Let {t;}}¥, be a set of Gauss quadrature points, e.g., the L-G-L points.
Define the fractional differentiation matrix D% as
a a,b\ (a0
D = (J7*) (%),

J

Denote
U= (u(to), u(tl)ﬂ T 7u(tN))Tﬂ ﬁ = (ﬁ(to)v ﬁ(t1)7 to 7ﬁ(tN))T7
Then, equation (1) can be written as matrix form,

D*U=\U+F
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Matrix form

Suppose J is a (N +1) x (N + 1) matrix defined by J;; = J]‘-l’b(ti), then
U=J0.
The matrix equation can be expressed as modal form
DU =)\JU+F
and a nodal form,
D*J'U=AU+F

Combined with the initial condition, both matrix equations can be solved
uniquely.
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Numerical example 1

Consider (1) with A =0,
— D) = f(t), tel-1,1]

We choose u(t) = sinps (¢t + 1) as our test example, where siny () is
Taylor of expansion of sin(z) up to degree M.

4 6 8 10 12 14 16 18 20
Degree of polynomial basises

Figure: Maximum errors of the spectral collocation method with o = 0.5.
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Spectral Element Method for the TFDE

Let Q = [t;, t,-], which is divided into K elements:
h=to<ti <-- <tg =t =[ti_1,t], hs =t; —t;i_1, 1 <i < K.
For t € [t;,t;y1] and n — 1 < a < n, we have

S p— (z [ o >88<>d>

k=1

i

The last term can be evaluated using (2). This induces a stiffness matrix,
My, which comes from D%,
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For each j, we define the following integral,

Fa,b,« A 1 ! a—1 ya,b
JiT(t) = @/_1(15 — )Y (s)ds, t> 1.

How to compute j}’”b’“(t)? Exact integral or numerical integral?

If £ > s, Gauss quadrature;
If ¢t =1, formula (2) and Jacobian-Gauss quadrature;

If t close to 1, accuracy of both Gauss and Jacobian-Gauss
quadrature would be reduced.
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To address this, we return to the three terms recursive relation for
Jacobian polynomials. We obtain a new three terms recursive relation for

Ja,b,a )
T )
o i t4+1)* — (t—1)*
Jo,b, (t) — ( I?(a +(1) ) ,
Fa,b,a a+b+2 [e% @ a_b",.
Jv (t):m((t—a)(t'i‘l) —(t+a)(t—1)%) 5 o (t),
Aa bJ]a+b1a( ) :B;z,bj;z,b,a( )+Cab aba( ) +l)a, b(t+1) +E~J(.z,b(t7 1)047

where A?’b, B;.l’b, C;’b, D}I’b, E;’b are the coefficients.
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Then, the integral over element of (J]’-l’b)(")(s) can be computed using

S 7ab s ; 1 _ gn—a1 a,by(n) s)ds
B0 2 gy [ =T

= Jurmbnnsay) g s

How well does this work?
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We compute

Ja,b,a ]- ! a— a
IO = oy / (=9 T 5)ds,

for t € [1,8], a = 0.5. The value of J%"*(t) is shown in the figure.

10

8r ‘
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4k

o

of gﬁw\ﬂﬁw
|

0 1 2 3 5 6 7 8

Qinwu Xu, Jan S. Hesthaven, Feng Chen



Hybrid strategy

m smooth part : Gauss quadrature;

m near singular part : three term recurrence relation.

Gauss quadrature recursive relation

Figure: Hybrid strategy
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Denote Uy, as the vector of function values at all Gauss points in element
k,
U, = T
k= (Uk,0,Uk,1," " Uk, N)

Then,

MU +MUp_1+-- -+ MUy =AU+ f,, k=12,--- K.

()\I—Mo)Uk:MlUk,1+'~-+Mk,1U1—fk, k=1,2,--- K.

Combined with the initial condition for each element, the equation can
be solved uniquely.
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Analysis

For the approximation of fractional derivative, we have the following

lemma,

Lemma 2.1

(Q. Xu, J. S. Hesthaven,2012) Suppose u(z) is a smooth function defined
in Q = [a,b]. Qp, is a discretization of the domain with interval weigth h,
up(x) is a piecewise interpolation of u in PY = span{1,x, -+ ,zN}.

Vx € I;, up, interpolate u at all Gauss points. Then we have

C, n>N
| o Dgu— DeupllL, <§ CANTI™" n < N,N —n odd
ChN*T1=2  n < N,N —n even

wheren — 1 < a < n, C is a constant independent of x.
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Convergence

Since u is solved element by element, for 0 < a < 1 the following result
is obtained.

Proposition 2.1

Suppose u is a smooth function, uy, is the numerical solution of equation
(1) using spectral elements method based on Gauss points, 0 < o < 1,
e=1u—up,
lella < { ChY, N is even
ChN*T1=« N js odd
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Numerical examples

Consider the following equation,

oD u(t) = —u(t) + f(b),

We choose the exact solution to be w(t) = sinp(t).

t € Q= [0,3n],

N =1
a=0.1 a=04 a=0..8
K llenl2 Order ller |2 Order ller |2 Order
20 6.70e-04 1.68 5.15e-03 1.50 2.74e-02 1.18
40 2.09e-04 1.69 1.82e-03 151 1.21e-02 1.18
60 1.05e-04 1.66 9.87e-04 1.50 7.51e-03 1.19
80 6.54e-05 - 6.42e-04 - 5.34e-03 -
N =2
a=0.1 a=04 a=028
K llen |2 Order ller |2 Order ller|l2 Order
20 3.33e-06 2.94 2.42e-05 2.89 1.88e-04 2.27
40 4.33e-07 2.85 3.27e-06 2.90 3.90e-05 2.25
60 1.36e-07 2.75 1.01e-06 2.84 1.56e-05 2.26
80 6.18e-08 - 4.45e-07 - 8.18e-06 -
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Numerical examples

N =3
a=0.1 a=04 a=0.8
K llen |2 Order ller |2 Order ller|l2 Order
20 3.10e-08 3.94 2.82e-07 3.81 2.40e-06 3.33
40 2.01e-09 3.95 2.02e-08 3.81 2.39e-07 3.29
60 4.06e-10 3.94 4.31e-09 3.80 6.30e-08 3.27
80 1.31e-10 - 1.45e-09 - 2.46e-08 -
N =4
a=0.1 a=04 a=0..8
K llenl2 Order ller |2 Order ller |2 Order
20 2.31e-10 4.96 1.73e-09 4.83 1.54e-08 4.41
40 7.42e-12 4.96 6.08e-11 4.74 7.28e-10 4.35
60 9.93e-13 4.96 8.91e-12 4.45 1.25e-10 4.31
80 2.38e-13 - 2.48e-12 - 3.61e-11 -
N =5
a=0.1 a=04 a=0.8
K llen |2 Order ller |2 Order ller |2 Order
20 1.51e-12 5.82 1.26e-11 5.85 1.22e-10 5.40
40 2.66e-14 - 2.20e-13 5.72 2.89e-12 5.33
60 2.89e-15 - 2.16e-14 - 3.34e-13 5.12
80 1.23e-14 - 5.88e-15 - 7.66e-14 -
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Parareal method for TFDE
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Parareal algorithm for ODEs

The parallel-in-time approach, called parareal method, was proposed in
(Lions, Maday, and Turinici, 2001).
Consider the following systems of ODEs:

Ut:f(u7t)a te®:= (OvT]v
u(0) = uyg,
The parareal algorithm is defined using two propagation operators.

m A coarse solver G(ta,t1,uq), provides a cheap but inaccurate
approximation to u(t,) with u(t,—1) = un_1,

m A fine solver F(to,t1,u1), provides an expensive but accurate
approximation of u(t,) from w(t,—1) = wp_1.
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First, the time domain is decomposed into K elements:
T
0=Ty< - <Tp < - <Tg=T, Tn:nAT7 AT:?

Assume that u” is the k'th iterated approximation to u,,. The process of
parareal algorithm is shown as,

Initial guess : compute uQ using coarse solver,

. k . . . .
Assuming that w;. is known, compute the solution in parallel using
the fine solver for each element,

The parareal iteration

k+1 k41 k k
unil = QunJr + Fu, — Gu,.

The algorithm is terminated if [uf — uf=1| < 7.
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1. Initial guess using coarse solver, ( serial)
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2. Using fine solver in each element, ( parallel )
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3. Compute the new solution using coarse solver
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Correct the solution
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Advance iteration
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Advance iteration
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Parareal method for TFDE

Consider the fractional ordinary differential equation with o < 1

oDfu(t) = Au(t), te,
u(0) = uy,

Both the coarse solver and the fine solver are defined based on our
spectral element method in this talk.

m Coarse grid : N, + 1 collocation points.

m Fine grid: Ny + 1 collocation points.

m Memory part : Ug., = {Uo, U1, - ,U,}.

m Denote v,, as the value of u(t) at right interface of element n,
that's v,, = Un,N = Un+1)0.
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Challenge 1: Dealing with the memory part.
We propose the following parareal method for TFDE,

Uyt =guit! + FuUg,, - GUG,,, 0<n<N-1.
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Challenge 1: Dealing with the memory part.
We propose the following parareal method for TFDE,

Uyt =guit! + FuUg,, - GUG,,, 0<n<N-1.

Challenge 2: Convergence.
The spectral element method above,

m fine solution converges to exact solution as At — 0 or K — co.

m Will this parareal solution converges to fine solution as iteration
number k increase?

Now we consider the values at each interface of elements, v,,.
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We have

n—1
Un:Z(AI_MO)_leUn—j; n:1,2,~-- ,K.

=
For the coarse grid, we define an operator R, s.t.
k k
Up = Zijn—j
j=1
where k denotes k'th iteration, vq is provided by the initial condition.

The fine integration operator T\’,]f can be defined accordingly.
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Introduce the parareal method for v**1,

n

vit! = ZRM“ Xn:R vk =) Rk, 0<n<K-L

Jj=1
Denote v* = (v, vF, - vE)T

0 0 0

™ R1 0 0

o : e 0

Rrgi1 -+ Ri1 0
0 0 0
N R — Ry 0 0
= : 0
R§+1—RK+1 + R{-R1 O

then we get the matrix form,
= MoF L 4 NOF, 0<n< K - 1.
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Assume u(ty,) = fine solution at ¢, then u(t,) = Z?Zl Rj].:u(tn_j).

Denote ef = u(t,) — v¥ and e* = (ek, ek, --- ek )T, then
k+1 _ k+1
€n - u(tn) —Un
n n n n
_ F k+1 Fok k
= E Ry ultn—j) — ) Rjvy; — E Ry vp_j + E Rjvn_;
Jj=1 J=1 Jj=1 Jj=1
n n
_ F ok PSS
=) (Rj —Rjlen_; + ) Rije,”;
Jj=1 Jj=1
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Since M, N are strictly lower triangular matrix,

K
ektl :N(ZMj)ek
§=0
K
:Nk+1(z M)k

j=0
Assume the convergence order of coarse solver is p + 1, then
(RT —R) ~ (AP, [|N*e0|| ~ (K(AL)PH)* ~ (AP,

If |(Z]K=0 M)k is bounded, the parareal solution converges to the fine
solution with convergence order (At)*P,(k is number of iterations).

Qinwu Xu, Jan S. Hesthaven, Feng Chen



For the case N. = 1. Our method reduce to L; scheme. The distribution
of R; with K = 20,a = 0.5 is shown in the following figure.

* ke

1 L L L L L L L
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

Figure: The distribution of R ;

For N.=1,A <0,

(ZJK:O MI)F| is bounded.

For a high order coarse solver (N, > 2), convergence of parareal
method can be verified numerically.

Assume u,(t) is the exact solution. Let 7, = u(t,) — u(ty),
en = ue(tn) — vf, then [[€¥]| < C(lle* | + [Inl]).
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We consider

oDfu(t) = —u(t) + f(t), te€][0,T).
To test the numerical accuracy, we choose the exact solution
ue(t) = singg(t). f(t) can be calculated according to this setting.

Example 3.1

Let T' = 27.The number of processors N, = 10, and Np = 12.
N¢ = 2,4,6. The absolute error max [v* — .| is shown as,

g O
iteration step

Figure: The accuracy of the parareal method in Example 3.1.
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Example 3.2

Let f(t) = sin(t), T = 157, = 0.5. The number of processors N, = 20,
and Np = 22. Ng = 1. ¥ = max |v* — ul.

el

Figure: Convergence
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Figure: The parareal solution
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Example 3.3
Let f(t) = sin(t),T = 157, = 0.1,0.5,0.9. The number of processors

N, =20, and Np = 16. No = 1. The error e¥ = max [v* — u.

—6— 0=0.1

. . .
4 6 8 10 12
Number of iterations:k

Figure: The error for different «
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Example 3.4

Let f(t) = sin(t), T = 157, = 0.6. The number of processors N, = 20,
and Np = 16.N¢c = 1,2,3,4. The error ek = max [v* — ul.

N.=1

—v—"c~

L L
0 2 4 6 8 10 12 14 16 18 20
Number of iterations:k

Figure: The error for different coarse solvers
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Parareal method for subdiffusion equation
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Parareal method for subdiffusion equation

We consider the following equation with periodic boundary condition,

0%u(z,t)

oDfu(z,t) = CYCI

x €0, 27],t € [0,T].

with initial condition u(z,0) = sin(x). The exact solution is

u(x,t) = Eo(—t%)sin(x), where E,(t) is Mittag-Leffler function with
one parameter.

Using Fourier transform in space, this equation becomes a system of
decoupled ODEs for each Fourier mode w.

oDt = —w*i.
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Parareal method for subdiffusion equation

Example 4.1

Let T =2,a0 = 0.2. The number of processors N, = 30, and Nr = 16.

N¢c = 2. Number of Fourier modes m = 40. The error

ek = max |v* — u.

nnnnnnnnnnnnnnnnn

Figure: Convergence Figure: The parareal solution
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Parareal method for subdiffusion equation

We consider the parareal method for long time integration of subdiffusion
equation.

Example 4.2

Let T'= 100, = 0.2,0.5,0.8. The number of processors N, = 30, and
Nr = 16.Ng = 2, Number of Fourier modes m = 60.

We consider the error between parareal solution and fine solution.
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Parareal method for subdiffusion equation
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Figure: Convergence for a = 0.2

Figure: The parareal solution for
a=0.2
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Parareal method for subdiffusion equation
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Figure: The parareal solution for

Figure: Convergence for o = 0.5 o =05
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Parareal method for subdiffusion equation
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Figure: The parareal solution for

Figure: Convergence for a = 0.8 o —= 0.8
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Conclusion
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Summary

hybrid strategy for near singular integration of memory part;
spectral element method for TFDE and the convergence;
parareal method for time fractional differential equation;
convergence of parareal method for TFDE.

Future work
Analysis of high order coarse solver;

Parareal method for fractional diffusion-wave equation.
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Thanks for your attention!
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