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STATISTICAL FOUNDATION OF DIFFUSIVE TRANSPORT:
THE BROWNIAN RANDOM WALK
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NONDIFFUSIVE TRANSPORT AND COHERENT STRUCTURES

Chaotic transport by Rossby waves in zonal shear flows.
Problem identical to E x B transport by drift waves in zonal flows *
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Solomon et al, Phys. Rev. Lett. 71, 3975 (1993) D. del-Castillo-Negrete, Phys. Fluids 10, 576 (1998)

Signatures of anomalous transport: anomalous scaling of moments,
(6r?) ~ t7, v # 1, and non-Gaussian (heavy tails) PDFs.

!DCN: Chaotic transport in zonal flows in analogous fluid and plasma
systems. Phys. of Plasmas, 7, (5), 1702-1711, (2000).



UNDERLYING MECHANISM OF NONDIFFUSIVE TRANSPORT

Levy flights induce by zonal flows and and long waiting times
induced by trapping by Rossby (Drift) waves.
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Levy flights: P(6x) ~ ox~ (1) (§x?) — oo for a < 2.



STATISTICAL FOUNDATIONS OF NONDIFFUSIVE MODELS
The Continuous Time Random Walk (CTRW) model

Consider an ensemble of particles that at times t1,tp,...t ...
experience a displacement xi, xo,...Xj...

T = tj — ti—1 and x; are assumed |ndependent identically
distributed random variables

C" T, = waiting time

T, "
€, = jump

(1) =waiting time probability density function (pdf).
n(x) =jump size pdf.

T2 x2
Plm < wait < 7] = / P(r)dT Plx1 < jump < xo] = / n(x)dx
T1

X1

Let ¢(x, t) be the probability of finding a particle at x at time t if
it was at x =0 at time t = 0.



THE MONTROLL-WEISS CTRW MASTER EQUATION

Probability that a particle has not moved during the time t
wo = [ urer
t

Probability of geting to x from any point x’ during the time
interval (0, t)

t 00
[ote=o) [ ate— X100 ear'ax
0 —o0

The probability of finding a particle at x at time t if it was at
x =0 at time t = 0 is given by the master equation

B(x, t) = S(x)W(t) + /0 W(t—t) /_ T x—xX)o(x, )t dx’

[Montroll-Weiss, 1969]



THE MONTROLL-WEISS CTRW MASTER EQUATION

Defining

a(s) = 15_@”&, fi(s) :é

where L[¢](s) = = Jo_ e ™y(t)dt denotes the Laplace
transform, the Master equation can be rewritten as

90— ["ara(-v) [ Tnx =500 0) = n(x = x)o(x, )]

0 —00

where Q(7) is the memory function. We can also write it as,

/ dt' H(t—t") / dx’ [n(x — x)p(x', t) — n(x" — x)p(x, t)]

The first term on the right hand side gives the accounts for
transitions for x’ to x and the second term accounts for
contributions of transitions from x to x’.



SOLUTION IN FOURIER-LAPLACE SPACE
AND FLUID LIMIT

» Let 7(k) and 7(s) denote the Fourier and Laplace transforms.

» Application of the convolution theorem allow to transform the
integral master equation into the algebraic equation

5 19 1
w0

which explicitly determines ¢(x, 7) given ¢(7) and 7(x).

» To simplify the highly nontrivial Fourier-Laplace inversion, and
to focus on the time asymptotic, t > 1, long wavelength
limit, we will consider

s—0, k—0,



RECOVERING THE STANDARD DIFFUSION MODEL

In the absence of memory

8t(g:%[ﬁ_1]'

In the long-wavelength limit, approximate

~

R AI/O
atgzm% ﬁ(0)+ﬁ’(0)k+n2()k2+...—1

Assuming the moments of 1) exist (key assumption!)
(x") = (=1)"7"(0),

and using the identity
F (03P = (ik)" P,

the inversion of the Fourier transform gives the diffusion

equation

Ot = X8)2<¢



FRACTIONAL IN SPACE MODEL OF
SUPER-DIFFUSIVE TRANSPORT

What happens if the moments of the jumps pdf does not
exist? What is the macroscopic, effective transport equation
in this case?

Going back to the master equation without memory

Se = |l xX000) <l = o, )] o
In Fourier space A
20 1tk - 11
To incorporate long jumps, we assume a Lévy process
n(x) ~ ’X‘La ) for X — 00
in Fourier space, 7j(k) ~ 1 — x|k|*, for |k| =0

For 1 < ar < 2 this implies the divergence of moments

(x") =00 for n>?2



FRACTIONAL IN SPACE MODEL OF
SUPER-DIFFUSIVE TRANSPORT

» Therefore, in the long wave-length limit

¢ A
? = XK

ot

> Introducing the symmetric fractional spatial derivative:

—1 2 00
o 4 1| el — cos (7T06/2) 9 / ¢(y7 t)
Po=F [ K] qb} O TQ2-a) 0x2 ) o |x—ylot Y
forl<a<?2.

> We arrive to the following nonlocal in space model of
superdiffusive-diffusive transport
o9

ot = X P



ASYMMETRIC SPACE-TIME FRACTIONL GENERAL MODEL
In flux conserving form
Ot = —Oxlar+a]+5,
where g; and g, are the left and right nonlocal fluxes
= —hoD{1DF T e, g =X oD T DTG,

where | and r determine the asymmetry of the nonlocal spatial
operators

a—1, 1 8/X ¢(y’t)
an ¢ - r(2—Oé 8X (X— a—l d.y7

a—1, B ¢(y,)
D gb ( —Oé 6X/ (y 1dy’

and the nonlocal temporal operator is

cmB . 1 E0-o(x,7)
o= p) /0 P

forl<a<2 0<fB<1.
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GREEN'S FUNCTION

Solution of the initial value problem
507 0 = x[/ oD + <DL} &, d(x,t =0) = o(x)
o8) = [ 6()Glx . )
In Fourier-Laplace space_,o'jhe Green's function is given by
A= x[I(—ik)* + r(ik)] , a#1

Introducing the Mittag-Leffler function

Eﬁ(z):;r(ﬁil)’ £lEser)] = 5=

The solution can be written in terms of the self-similar
variable n = x(x¥/#t)=A/* as

Glxut) = ¥R, K= 5 [ e B IAGK) ok

—0o0



RELATION TO LEVY DISTRIBUTIONS

» Without memory (8 = 1) i.e., only spatial fractional diffusion
G(x,t) =t L(n)
where L(7) is the a-stable Lévy distribution
L(ky=eMR) | A= [I(—=ik)* + r(ik)*], a#1

Levy

Gaussian

Ofel-Cast



SELF-SIMILARITY AND SCALING

» The scaling A(uk) = p“A(k) implies the self-similar evolution
G(x,ut) = p= % G(u=P/x, 1),
» From here it follows that the moments of G scale as

(x9) = Ct¥le = / 0% K (n)dn .

>1 super-diffusive scaling
28/aq =1 diffusive scaling
<1 sub-diffusive scaling

» Asymptotic scaling
B/a
G(X, to) ~ X7(1+a) s X > (X,lc/ﬁt0>

t8  for K (X;l Xg)l/ﬁ

G(Xo, t) ~
t= for  t> (x;! xg‘)l/ﬁ :



FRACTIONAL MODEL OF CHAOTIC TRANSPORT IN
QUASIGEOSTROPHIC FLOWS

Comparison with asymmetric neutral

fractional diffusion equation

936)

P(bz,t
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D. dCN, Phys. Fluids 10, 576 (1998).
K. Gustafson, D. dCN, W. Dorland Phys. Of Plasmas 15, 102309 (2008).

Fractional model (in space and time) reproduces quantitatively the
PDF and scaling of moments in the strongly asymmetric regime



FRACTIONAL MODEL OF TURBULENT TRANSPORT IN
MAGNETIZED PLASMAS

Test particle transport in electrostatic plasma turbulence

ExB flow velocity eddies “Avalanche like” phenomena induce flights that lead to

induce particle trapping spatial non-locality
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D. del-Castillo-Negrete, B. Carreras and V. Lynch, Phys. Plasmas 11, 3854 (2004); Phys. RYe/v{ Lett. 94,
065003 (2005)



FRACTIONAL MODEL MODEL OF TURBULENT TRANSPORT
IN MAGNETIZED PLASMAS

Test particle transport in the electrostatic plasma turbulence

Fr=—na] [e=par ] @ ()i
B=1/2

Levy distribution at fixed time Pdf at fixed point in space
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D. del-Castillo-Negrete, B. Carreras and V. Lynch, Phys. Plasmas 11, 3854 (2004); Phys. Rev. Lett. 94,
065003 (2005)

Fractional model reproduces quantitatively the PDF and scaling of
moments



The need for tempered Levy processes

*As discussed before, there is experimental and numerical evidence of
Levy flights in transport problems.

*The use of fractional diffusion to model these phenomena has proved
to be very valuable.

*However, it is plausible that the finite-size domains and decorrelation
effects (among other effects) might have an impact on the Levy flights.

+Also, the divergence of the second moment of Levy pdfs can be
physically questionable.

*These issues have motivated the introduction of tempered Levy
processes [e.g. Mantegna&Stanley, 1994; Kopone, 1995; Cartea&dCN, 2007,
Rosinski, 2007].

*Here we construct models that describe macroscopic transport
driven by general Levy process and exponentially tempered processes in
particular.



The importance of intermediate asymptotics

*Going back to the Continuous Time Random Walk (CTRW) model
g

— T"-/—ag A(E) = jump size pdf (1) = waiting time pdf

Amet 2 o <§2> finite = Gaussian => 9,P = y d. P

A~ = <§2> infinite = o — stable Levy = J P=yx d;, P

What happens when 2 ~ & (1+%) 74 9

*Since <§2> is finite, we expect the dynamics to converge asymptotically to Gaussian.

*However, the convergence rate is extremely slow, and in applications pure Gaussian
behavior might never be observed but neither pure a-stable Levy!

*What is needed is a model that describes the interplay between long-jumps,
truncation effects, and non-Markovian effects in the intermediate asymptotic regime.



CTRW FOR GENERAL LEVY PROCESSES

Going back to the Montroll-Weiss master equation for the CTRW
o] t [e'e)

P = 5(x)/ w(t’)dt’+/ Y (t—t) [/ n(x—x") P(x',t")dx'| dt’
t 0 —o0

In the time-asymptotic limit, assuming 1 ~ t—?~1, and in the
long-wavelenght (fluid) limit

Ak) = MK =1+ AK) + ...

we get
607 P(k, t) = N(k)P(k, t),

where thB is the regularized (in the Caputo sense) fractional
derivative in time.



GENERAL LEVY PROCESSES

» A is given by the Lévy-Khintchine representation

1 <o
A=Inf) = aik — 502/(2 +/ [e’kx —-1- iku(x)} w(x)dx,
—00
where w(x) is the Lévy density.
» Substituting into the dynamic equation and taking the inverse

Fourier transform yields

1
SD?P = —a0sP + 5028§P+

+ [ 1Py ) = PO + a0 Pl w(y)dy

—0o0
» This is the macroscopic transport equation describing the
continuum, fluid limit of a CTRW with a general jump
distribution function 7 characterized by a general Lévy density
w(y).
[Cartea and del-Castillo-Negrete, PRE, 76 041105 (2007)]



a-STABLE LEVY PROCESSES
In the a-stable case the density is

c%ﬂ \x]_(HO‘) for x <0, "
wis(x) = 1
C(12;9)X—(1+a) for x > 0,

Substituting and integrating

1 clk|* {1 + ifsign(k)tan(ar/2)} o #1,
Ais = iak — =0k® — . (2)
clk| {1+ 2Csign(k)In |k|} a=1,

™

where sign(k) = |k|/k.



a-STABLE LEVY PROCESSES

From
SDYP(k,t) = AsP,

inverting the Fourier transform we recover the fractional diffusion
equation

1
SDPP(x, t) = —adyP + 502(95/3 + [l —aoD¥ +ryDX] P,

where the weighting factors are defined as

-0 (040
2cos(am/2)’ 2cos(am/2) "

and

FloooD2f] = (—ik)*F, F[«Df] = (ik)* F,



TEMPERED LEVY PROCESSES

> In the exponentially tempered case, the density is

c@ x| (F) e=AXl for x < 0,
WET(X) =

c—(lge)x_(Ha)e_AX for x > 0,

0<a<2,¢c>0 -1<6fd<land A>0.
» The corresponding characteristic exponent is

Ner = ————x
ET 2 cos(am/2)

{ (1+0)(\+ ik)® + (1 — O)(\ — ik)™ — 2X,
(1+0)(A+ ik)® + (1 — )(A — ik)™ — 2X* — 2ikafA*~

for0 <@ <1land 1l < a <2 respectively.



TEMPERED FRACTIONAL DIFFUSION

» From the fluid limit of the CTRW master equation,
SDPP(k,t) = Ner P,

inverting the Fourier transform we obtain the tempered
fractional diffusion equation

SDPP(x,t) = cOX*P.

» Where we have defined the tempered fractional diffusion

operator
OGP = cD2AP — VO P — vP.

» And we have defined the tempered fractional derivative
DI = e _ DX ™ + re’ DS e M.

[Cartea and del-Castillo-Negrete, PRE, 76 041105 (2007)]



TEMPERED DIFFUSION OPERATOR

OUAP = cDXAP — VAP — vP
» Fourier transform of the tempered fractional derivative
FD2P = 1A= ik)™ + r(A+ k)] P

» ForO<a<1, V=0, but for for 1 < a < 2 there is a
tempered induced drift in the asymmetric case

B caf 1
~ cos (arm/2)|
» The constant v is defined as
c\®
V= ————,
cos (am/2)

although this term looks as a “damping” it actually guarantees
the conservation of the probability, i.e., Ag7(k = 0,\) = 0.
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TEMPERED FRACTIONAL DIFFUSION

Green's function
1 0 :
e Ey [tﬁ/\(k; A)] dk

:% .

Probability conservation
/OO Gdx = G(k=0,t) = Eg [tﬂ/\(o; A)] = E5(0)=1.
Truncation breaks the self-similarity
G(x,ut; \) = p PG (,Lfﬁ/ax, t;,uﬁ/o‘)\) )

Truncation guarantees finite moments.
First moment (x)(t) =0 for 1 < a < 2 and

VvV
B
t) = 0 O<a<l,
(x)(1) TCE) o
—xab is the drift velocity defined before.

Where V = W



TEMPERED FRACTIONAL DIFFUSION

» Second moment:

CRV2e 4t P 0<a<l
2
R0 2
”ﬁnﬁ, l<a<?2,

where Cg = 2/F(26+1) — 1/ (8 + 1)]?, and

xo o — 1|
2 |cos (am/2)| \2—

Xx =
» Note that, as expected,

lim =
A—0 Xe =

[Cartea and del-Castillo-Negrete, PRE, 76 041105 (2007)]



GREEN'S FUNCTION OF SYMMETRIC TEMPERED
FRACTIONAL DIFFUSION § =0 =0and 1 < a < 2

Glx,t) = - /OO cos(kx)Eg [tﬁ/\ET(k)} dk .

™ Jo

n=Ax, T=t/tc, te = c WP /B

0 0.5 1

a=125 g=05and A=1



GREEN'S FUNCTION OF ASYMMETRIC TEMPERED
FRACTIONAL DIFFUSION

—Ax

1L [ i A—ik)®—Aa Aot €
c:z/ B
U — 00

X1+oc :




TEMPERED INDUCED ANOMALOUS SCALING TRANSITION

» Short time scaling
G(x,ut; \) = PG (/fﬁ/o‘x, t; uﬁ/o‘)\) .

G(0,t;0) = t7P/G(0,1; t9/*N)
G(0,t < L;\) ~ t e

> Long time scaling

Glx,t) = — / Y e, [tﬁ/\(k; )\)] dk

21 oo

1 o0
G(0, t):%/o Es [tﬁ/\gr} dk

oo 1 o0

~ — B 2 = — 2

/0 Es | -xt"k?| dk xtﬁ/o Es (—v?) du,
G(0,t>> 1;\) ~t 72,




ULTRA SLOW CONVERGENCE TO SUB-DIFFUSIVE SCALING

AP

» Short times, A = 0 scaling: G(0, t; \) ~ t~F/«
» Large times, tempered scaling lim;_o, G(0, t; \) ~ t=B/2

» For 28/a > 1 super-diffusion — sub-diffusion transition with
cross-over time

[Cartea and del-Castillo-Negrete, PRE, 76 041105 (2007)]



TEMPERED INDUCED TRANSITION OF TAILS'S DECAY

» Short time (a) algebraic decay G(7, t < tc) ~ |n|~(1+®)
» Cross-over time (c) exponential decay G(x,t ~ tc) ~ e,
» Long time (d) stretched Gaussian decay

G(x,t> tc) ~n™ exp (—n7)]

(@

(b)

T =0.0005 ©=0.05
o1 o 1
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£ £
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10 10
T=1 T =500
Q 10° QO 10°
%10' % 10"
B £
10° 10?
10° 10°
2 3 05 1 15 2 25
Ax/o Ax/o

[Cartea and del-Castillo-Negrete, PRE, 76 041105 (2007)]




LARGE TRUNCATION EXPANSION

» Fourier transform of tempered fractional derivative operator

—_— k (0% 'k (03 R
DYAP = )@ [/(1—&) +r<1+l)\> }P,

> Using the expansion (1 —2)* = 322, VI/J-(a)Zj, lz] < 1,
we have
Dop _ ya N @ (KN, i
S (8) oo
j=0

» \-Expansion of tempered fractional difusion

— V. _—
AP = —2H(1 — )0 P—
X

() 2j —a\ ik A

1 Xlp
~ cos om/2 Z ( ) [ <2j+1> A
[Kullberg and D. deI—Castlllo-Negrete, J. Phys. A: Math. Theor.
45 255101 (2012).]




LARGE TRUNCATION EXPANSION
» The expansion converges in general only for |k| < A. To invert
the Fourier transform we introduce the low-pass filter operator
fx)=F H{H(A ~ k) FIf]} .
> Applying the low-pass filter to the operator, OXP, we get

) V. oP 1
2 p =~ TE (1 -
0 X (1=)ge Ox  A2=cos(am/2)

S e (2502
220-1) 9x2/ 2j+1) Xox]|

convergence is guaranteed because P(k) = 0 for |k| > .
» Equation for coarse grained PDF at scales larger than 1/

oP 8P
0°P (2—a)9 o3P (3—a)( —a) 0*P

X T3 g3 T T e g T




FRONT PROPAGATION IN REACTION-DIFFUSION SYSTEMS

> One of the simplest reaction-diffusion systems is the
extensively studied Fisher-Kolmogorov model

Orp = X020 + 79 (1 — ¢)

» The nontrivial dynamics of this type of systems arises from
the competition between the reaction kinetics and diffusion.

> Front speed ¢ = 2,/7x

¢ =1 1
stable
0.8f

0.6

0.4}

0.2

=0

unstable
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FRONT PROPAGATION IN THE PRESENCE OF LEVY FLIGHTS

As a simple model to explore the role of super-diffusive transport
in reaction-diffusion systems we consider asymmetric fractional
Fisher-Kolmogorov equation

Ot = X —oc Dy ¢ + 79 (1 — @)
oy L g [ d(u)
,OODXQZ)—F 8/3 x du

(n—a) ™ — )

[del-Castillo-Negrete, Carreras, and Lynch, PRL, 91 018302
(2003)]



Algebraic decaying accelerated fronts

a=1.5
1 (x =X
0 x,0)=1-=|1+tanh —“)
o 0100 =11 tanh
extrema
P
P o~ xOre oa=1.25
5
10 0 5 10
x
! STABLE
04 UNSTABLE
Xx D. del-Castillo-Negrete et al, Phys.Rev. Lett. 91, 018302-1 (2003)



Leading edge calculation for algebraic decaying,

accelerated fronts
At large x, ¢ <<1 implies

dp=Dd’¢ + v ¢

0 1 x<0
¢(x7 )={6_M

x>0

p=e¢""y(x.t) |y =Dy

Y (x0) = f )y x = (D7) “n]dn

-1/a

p(xn=e” f P dn + & fe“”””“"&(n)dn 2= x(D1)

using for large n

t fixed z— ¢~x" mmmm)-  algebraic tail

. ' 1/ .
x fixed t— ¢ ~ ey V~ ey “ - exponential
acceleration

[del-Castillo-Negrete, Carreras, and Lynch, PRL, 91 018302
(2003)]
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Exponential acceleration

Analytical scaling p~x"e"’
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Space-time plot of front isocontours



TEMPERING EFFECTS IN SUPER-DIFFUSIVE FRONT
ACCELERATION

To study the role of truncation in fronts we propose the
exponentially truncated fractional Fisher-Kolmogorov equation

0 = —VOxd+ cDI ) — pd + 79 (1 — ¢)

Here we will focus attention in the left asymmetric truncated
fractional case without drift

06 = x [ Dl (76) = A" +76(1- )

Without truncation Lévy flights lead to algebraic tails and
exponential front acceleration.

What is the role of role of tempering on these phenomena?
[del-Castillo-Negrete, PRE 79, 031120 (2009)]



FRONT REGIMENS: NUMERICAL RESULTS

(a) Asymptotic algebraic regime for A = 0; (b) Intermediate asymptotic
algebraic regime for A # 0; (c) Truncated regime for 0 < A < v; (d)
Over-truncated regime for A > v.

(a)

@

[del-Castillo-Negrete, PRE 79, 031120 (2009)]



ANOMALOUS TRANSPORT AND FRONT PROPAGATION

Regular Diffusion Fractional Diffusion Tempered
Fractional Diffusion

(b)




LEADING EDGE APPROXIMATION

> At the leading edge of the front ¢ < 1, and therefore
06 = xe ™ o Df (%0) + (v =A@
» Substituting ¢ = e_”\x+("/_><’\a)t1/)(x, t) the equation reduces

to the asymmetric fractional diffusion equation with general
solution

wxt) = [ Gl o [x - (e ] dy

» For an initial condition of the form ¢(x,t =0) = A for x <0
and ¢(x,t =0) =e ¥

x/T R 0
w — e,(,/,)\)x / e(llf)\)TnG)\ZOdn_’_Ae)\X / (_;)\:Oef)ﬂ"r]d77

oo /T



LEADING EDGE APPROXIMATION

> In terms of ¢ the solution can be written as
b= e X=Xt T4 A(rXAM)E T, 7

» Where
x/T (v Ayrn
I, = / eV NT G,\:o(ﬁ)dﬁ

oo
I = Ga=o(n)e "dn.
x/T
» The analysis is based on the asymptotic behavior of Z; and Z;

for x/T — oo where
7= (xt)"*



LAGRANGIAN FRONT SPACE-TIME PATH, x,(t),

» Intermediate asymptotic Levy tempered front path

M (t)+(y=xA)t+Int—(a+1)Inx (t) =M

» Gaussian, diffusive front speed (green dotted lines)

]
%




LAGRANGIAN FRONT SPEED v, (t) = dx, /dt

> Intermediate asymptotic Levy tempered front speed (red
dashed lines)

1
e G
a+1

+ x(t)
— =A%
X

VL(t)

» Terminal velocity (black lines) v,

[del-Castillo-Negrete, PRE 79, 031120 (2009)]



LAGRANGIAN FRONT SPEED v, (t) = dx, /dt

Blue: Diffusive front speed c¢= 24 vxqg

Red: Terminal speed v, = 1=2°X

Green: Fractional speed vy (t) = vipe(t—t0)/a

A1
Magenta: Tempered speed v, (t) = % = %
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FOKKER-PLANCK EQUATION WITH RATCHET POTENTIAL
0P = 0, [POV] + xO%P.
Periodic potential, V(x) = V(x + L),

Vv 1 — cos [mx/a1] fo<x<a
T 0 14 cos[r(x —a1)/a] ifa<x<L,

with broken symmetry parameter A = (a; — a2)/L

0 0.1 0.2 03 0.4 0.5 0.6
E:

As it is well-known, in this case, even when the potential is
asymmetric, a net current cannot appear unless a non-equilibrium
perturbation is added.



LEVY RATCHETS IN THE FRACTIONAL FOKKER-PLANCK
EQUATION

> In [del-Castillo-Negrete, Gonchar, Chechkin, arXiv:0710.0883
(2007), Physica A (2008)] a minimal model of ratchet
transport driven by Levy noise was presented.

» Numerical integrations of the Fractional Fokker Planck
equation

0P = 0x[POxV] + x [l-oc D5 + D51 P

showed that even in the absence of an external tilting force or
a bias in the noise, the Levy flights drive the system out of the
thermodynamic equilibrium and generate a current in the
presence of an asymmetric potential.



LEVY RATCHETS IN THE FRACTIONAL FOKKER-PLANCK

EQUATION
Time evolution of of PDF Current as function of
asymmetry and «
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[del-Castillo-Negrete, Gonchar, Chechkin, arXiv:0710.0883 (2007),
Physica A (2008)]
What is the role of truncation in this phenomena?



TEMPERED FOKKER-PLANCK EQUATION FOR QUADRATIC
POTENTIAL V(x) = Ax?

8:P = O, [POV] + x [Ie_’\x _ooDE M e DY e y] P,

Steady State Solutions for a =1.5
and =y 12"

——i=5

=3 =10
- % - Asymptotic Boltzmann

Non-Boltzmann steady state for finite A\, and approach to
Boltzmann steady state in the limit A\ — oo

[Kullberg and D. del-Castillo-Negrete, J. Phys. A: Math. Theor. 45
255101 (2012) ]



TEMPERED FOKKER-PLANCK EQUATION FOR RATCHET

Semilog plot of the Steady State Profiles
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Non-Boltzmann steady state for finite A, and approach to
Boltzmann steady state in the limit A\ — oo

[Kullberg and D. del-Castillo-Negrete, J. Phys. A: Math. Theor. 45
255101 (2012).]



TIME DEPENDENT SOLUTION AND RATCHET CURRENT
a=15
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[Kullberg and D. del-Castillo-Negrete, J. Phys. A: Maths Theor. 45



CONCLUSIONS

We review fractional diffusion in the context of the CTRW
model and discussed applications in fluids and plasmas.
[dCN, Carreras, and Lynch, PRL, 94 065003 (2005)]

Following Ref.[Cartea and dCN, PRE, 76 041105 (2007)] we
discussed the CTRW for general stochastic processes and for
Levy tempered processes in particular.

The continuum limit of the CTRW for Levy tempered
processes leads to the tempered fractional diffusion equation
introduced in Ref.[Cartea and dCN, PRE, 76 041105 (2007)].

The non-Markovian, tempered fractional diffusion model
exhibits ultra-slow convergence to sub-diffusive transport and
the pdf exhibits a transition from algebraic decaying to
stretched exponential



CONCLUSIONS

Fronts in the fractional Fisher-Kolmogorov equation exhibit
exponential acceleration [dCN, Carreras, and Lynch, PRL, 91
018302 (2003)].

With truncation, this phenomenology prevails in an
intermediate asymptotic regime. Outside this regime, the
front's velocity exhibits an algebraically slow convergence to a
terminal velocity [dCN, PRE 79, 031120 (2009)].

Following Ref.[dCN, Gonchar, Chechkin, arXiv:0710.0883 (2007),
Physica A (2008)] we discussed a minimal model for Levy
ratchets.

In the limit A — oo the steady state solution of the tempered
Fractional Fokker-Planck equation approaches the Boltzmann
distribution and the ratchet current vanishes. However, for
finite A, the steady state is non-Boltzmannian and a ratchet
current persists. [Kullberg and D. del-Castillo-Negrete, J. Phys. A:
Math. Theor. 45 255101 (2012).].



