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Abstract

Fractional Calculus has a close relation with Probability. Random
walks with heavy tails converge to stable stochastic processes,
whose probability densities solve space-fractional diffusion equa-
tions. Continuous time random walks, with heavy tailed wait-
ing times between particle jumps, converge to non-Markovian
stochastic limits, whose probability densities solve time-fractional
diffusion equations. Time-fractional derivatives and integrals of
Brownian motion produce fractional Brownian motion, a useful
model in many applications. Fractional derivatives and integrals
are convolutions with a power law. Including an exponential term
leads to tempered fractional derivatives and integrals. Tempered
stable processes are the limits of random walk models where the
power law probability of long jumps is tempered by an exponen-
tial factor. These random walks converge to tempered stable
stochastic process limits, whose probability densities solve tem-
pered fractional diffusion equations. Tempered power law wait-
ing times lead to tempered fractional time derivatives, which
have proven useful in geophysics. Applying this idea to Brown-
ian motion leads to tempered fractional Brownian motion, a new
stochastic process that can exhibit semi-long range dependence.
The increments of this process, called tempered fractional Gaus-
aian noise, provide a useful new stochastic model for wind speed
ata.
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Continuous time random walks
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A random particle arrives at location S(n) = X1+ ---+ X, at
time T, = W1+ -+ Wy,. After Nt = max{n > 0: T, <t} jumps,
particle location is S(/Vy).



CTRW Ilimit theory

If P(Xp > ) ~ 2% and E(X,) = 0 then n=1/9S(nu) = A(w).
The a-stable limit A(u) has pdf p(x,uw) with Fourier transform
p(k,u) = e¥¥alk) and Fourier symbol ¢ 4(k) = (ik)® for 1 < a < 2.

If P(Wy, >t) ~t 8 then n= /ATy, = D,. The B-stable limit has
pdf g(t,u) with Laplace transform §(s,u) = e~ “¥D(s) and Laplace
symbol ¥p(s) = sf for 0 < 8 < 1.

Inverse process: n PN,; = E; = inf{u > 0: Dy > t}, and then

n_B/O‘S(Nnt) = n_B/O‘S(nB-n_BNnt) ~ (nﬁ)_l/aS(nB-Et) = A(E}).

Since E; has a pdf h(u,t) with LT h(u,s) = s~ Lpp(s)e “Wn(s),
the CTRW limit A(E;) has pdf

g(z.t) = /Ooop(a:, Wh(u, tydu ~ 3 P(A(w) = z| By = u) P(E; = u).



Probability and fractional calculus

CTRW Ilimit pdf has Fourier-Laplace transform
o0 -
ak,s) = [ 5k, wh(u, s)du

0 P — (ik)e

Then s8q(k,s) — sP~1 = (ik)*gq(k, s) which inverts to

9 q(z,t) = DYq(x, 1),
using Caputo on the LHS and Riemann-Liouville on the RHS.

Note 8? codes power law waiting times, DY power law jumps.

Reduces to traditional diffusion for « =2 and g = 1.



Anomalous diffusion processes

Here « = 2.0,1.7 (left/right) and 8 = 1.0,0.9 (top/bottom).
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Tempered fractional calculus

Tempered stable D; has pdf with LT §(¢,u) = e~ “¥D(s) where the
Laplace symbol ¥p(s) = (A + s)? — A8 for some X > 0 (small).

Tempered stable A(u) has pdf with FT p(k,u) = e¥¥ak) where
the Fourier symbol ¥ 4(k) = (A 4+ ik)®* — X\* —ikaX®~1 with A > 0.

Again E; has pdf with LT A(u,s) = s~ 1p(s)e #¥p(s), and again
©.@)
A(E,) has pdf q(z,t) = /O p(z, u)h(u, )du with FLT

s~ 1yp(s)
Yp(s) —vYalk)
Then ¢¥p(s)g(k,s) — s Tp(s) = va(k)g(k,s). Invert to get

A
8, q(x,t) = DY q(x, t).

q(k,s) =

Tempered jumps P(X, > z) ~ z— % and waiting times.



Space fractional tempered stable

Tempered stable Lévy motion with a = 1.2

A=0.1 A=0.01
- 200
0
_50 L
0
—100}
0 5000 10000 0 5000 10000
A =0.001 A =0.0001
500 - 1000 -
500
0 0
—-5007
-500 : :
0 5000 10000 0 5000 10000



Tempered power laws in finance

AMZN stock price changes fit a tempered power law model
P(X > ) ~ 2796703 for 2 large

In(P(X> x))

15 2.0 25 3.0

In(x)



Tempered power laws in hydrology

Tempered power law model P(X > z) ~ 27 9-6¢752% for incre-
ments in hydraulic conductivity at the MADE site.

In(P(X>x))




Tempered power laws in atmospheric science

Tempered power law model P(X > z) ~ 27 92¢70.01z for daily
precipitation data at Tombstone AZ.

In(P(X>x))

In(x)



Tempered stable pdf in macroeconomics

Density
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One-step BARMA forecast errors for annual inflation rates, and
a tempered stable with o« = 1.1 and A = 12 (rough fit).



Tempered time-fractional diffusion model
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| (¢) Case 3: LLNL concentration profiles
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Fitted concentration data from a 3-D supercomputer simulation.
ADE fit uses a = 2,8 = 1. Without cutoff uses A = 0.



Numerical codes for fractional diffusion

For a > 0 we have D% f(x) = lim;,_,ogh ™ *A%f(x) where
o _ — [« PRY) o a\ Ma+1)
wrsr= 5 (B) ot (5) = e

Use to construct explicit/implicit finite difference codes.

@)
These codes are mass-preserving since » (j‘) (-1)) =0.

j=0
Change jh to (j—|a])h for unconditional stability (implicit Euler).

Use operator splitting for 2-d, 3-d, or reaction term.

Finite element and finite volume methods also available.



Numerical example

Exact solution p(z,t) = e~ tx3 and numerical approximation to

dp(z, t) 0'-Sp(, 1)

on 0 < z < 1 with p(z,0) = 23, p(0,t) =0, p(1,t) = e, r(z,t) =
—(1 4 x)e 3, d(z) =T (2.2)z28/6.
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Tempered fractional diffusion codes

For 0 < a <1, limy_,oh A% f(z) = D%’Af(a:) where
w . .
AN f(z) =Y <a> (1) e M0 f(z — jh) — (1 — e M) f(2).
j=0 \’
Codes are mass-preserving since (by the Binomial formula)
OO . .
> (O‘> (1) e Mh = (1 —e M)
j=0 \/
Stable, consistent implicit Euler codes: shift jh — (j — |«a])h.

Crank-Nicolson codes are O(At2 4+ Axz).
Apply Richardson extrapolation to get O(At2 4+ Az?).

For 1 < a <2, hm®A%Af(z) — DY f(z) + a1 ().



Numerical example

Exact solution u(z,t) = zPe~**~t/I(1 4+ 8) and Crank-Nicolson
solution (extrapolated) to

Op(x,t) = c(z)DL p(x, t) + r(z,t)

on0<z<lwitha=1,61x=2,8=238, p(z,0) =zPe /[ (B+ 1),
p(0,t) =0, p(1,t) = e AT (B+1), c(z) =2°T (1 4+ B —a)/F(B+ 1),
and r(z,t) = r1(z,t)e MM (148 —a)/I(B+ 1) where
(1 — )N thB  gpra—lgatf-l 210

B+ r(8) " rA+8-a)

ri(x,t) =

At Ax CN Max Error Rate | CNX Max Error Rate
1/10 1/50 |7.7738x 107> — 2.8514 x 107° —

1/20 1/100|3.8353x 1072 2.03 | 7.2120x 10~" 3.95
1/40 1/200 | 1.9055 x 107> 2.01 | 1.8157 x 10~ 3.97
1/80 1/400 | 9.4976 x 107® 2.01 | 4.5555 x 1078  3.99




Fractional derivatives: Integral forms

In the simplest case O < a < 1 the generator form is
o oo
D2 f(z) = / — f@—))y Ly,
@) = o o @ = fa—p)y ™y
Check: Since f(z —v) has FT e ¥ f(k), then the RHS has FT
o o . .
1 _ —iky L —a—ld .
r(1—a)/o (1—e ™) F(k)y Y
For A > 0 it is not hard to compute [Prop. 3.10 in MS 2012]
o 0. @) .
1 — — (A ik)y —a—ld — () )&
F(l—a)/C) (1—e )y y = (A +ik)

and then (let A — 0) D¢f(x) has FT (ik)*f(k). For 1 <a <2

ala—1) [oo p o
F =) o F@—0—f@+uf @)y dy

and again the RHS has FT (ik)*f(k).

D% f(z) =



Tempered fractional derivatives

In the simplest case 0 < a < 1 the generator form is

DI @) = moq oy ) (@) =1 —y)e My ay.

Check: The integral on the RHS has Fourier transform
o e . .
1 _ —1ky L — Ay —a—ld
r(1_a)/o (1= e7™) Tty Y
(8% o0 . —~
— 1 — —(A+ik)yy 1 — — Ay ke —a—ld
oy o (e ) — (1= e™)) F(k)y ™ty

which reduces to [(A 4+ ik)® — XY F(k).

For 1 < a < 2 we have

alae—1) [ p Ny —o—
Fa o Jo (@0 = f@ +uf @)e My dy

and the RHS has FT [(A 4 ik)® — A¥ — ikaX* 1] f(k).

D3 f(2) =



Laplace transform approach

Since eM f(t) has Laplace transform f(s—\) and since D f(t) has
LT s®f(s), we see that

/OOO e SIDY [ektf(t)} dt = s*f(s — \).

Using the shift property one more time, we see that

/Ooo e_ste—)\t[D)? [ektf(t)} dt = (s + )\)af-‘(s).

Then for 0O < o <1 we have
A —
D f () = e MDY N f(B)] — A f ()
and for 1 < o <2 we have

DA f(2) = e D [ ()] — A f(2) — ad T/ (2).



Fractional derivatives (other integral forms)

Recall that in the simplest case 0 < a < 1 the generator form

D) = r g o (F@) = f@ =)oy

Integrate by parts [udv = uv — [vdu with u = f(z) — f(z—y) and
dv = ay~* 1ldy to get the Caputo form

1 o o — — 1 RO —Q
o FE Ay = s [ P -
where (x —u)4 = (r —u) for x > u and (z —u)4 = 0 otherwise.

Move the derivative outside to get the Riemann-Liouville form

1 d oo e 1 d oo .
r(1—a)dx/o fle—yy "y = r(l—oz)d:c/—oof(u)(x_u)+ W

Caputo is I172D! f(z) and Riemann-Liouville is DII1 = f(z) where

19 f(x) = ﬁ /7 s - w3 tdu



Fractional Brownian motion

Given Z, iid with mean zero and finite variance, the time series

m .
Xt =A%, =) (O‘> (—1)Z,_;
— J
j_
is long range dependent: E(X X4 ;) =~ |j|?7 72 with H =1/2—a.

Then n=H(X{4+-- -+ X[ny)) = Bg(t) fractional Brownian motion.

Here By (t) = 02 B(t) — 0 B(0) where B(t) is a Brownian motion:

Bu(®) =y [ (=037 = 0 - w37 Blaw

with B(du) = B’(u)du in the distributional sense (Caputo).

Hence FBM is the fractional integral of the white noise B(du).



Tempered fractional Brownian motion

Tempered fractional Brownian motion with —1/2 < a < 1/2:

Boa(t) = / e

— 00

[e_A(t_u)ﬂL(t — u)__i_a — e_)‘(o_u)+(0 — u)__i_a} B(du).

TFBM is the tempered fractional integral of white noise B(du):

I f () = ﬁ /_ 0:0 Fw)e MW+ (¢ —u)eLdu,

Tempered fractional Gaussian noise: X; = B, \(t) — By A(t — 1).

Semi-long range dependence: E(X; X4 ;) ~ |j|*!1 72 for j small to
moderate, then E(X;X;4,) = |j|~2 as j — oo, where H = 1/2—o.

For any Z, iid with mean zero and finite variance, the time series
X = AYAZ, also exhibits semi-long range dependence.



FBM and tempered FBM

FBM (thin line) and TFBM (thick line) with same B(du) for
H = 0.3,A=0.03 (left) and H = 0.7, A = 0.01 (right).
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Sample paths are Holder continuous of order H.

Scaling: By(ct) < cHBp(t) and By \(ct) = cH B, (1) .



Semi-long range dependence

The covariance functions E(XyX;4;) for FGN and TFGN with
H = 0.7 (and A = 0.001) are quite similar until 7 gets large.
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Spectral density

FGN spectral density blows up at low frequencies for H > 1/2:

1 >
f(w) = o > e VE(Xi X4 5) & w27 as w — 0.

J=—00
For TFGN with A = 0 we get a similar result

w2

far(w) =~ N2 4 2] 2 as w — 0.

Hence f, \(w) ~ |w|172 for moderate frequencies, but remains
bounded for very low frequencies (Davenport spectrum).



Spectral density comparison

Spectral density for FGN and TFGN with H = 0.7, A = 0.06.
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Davenport spectrum

Kolmogorov invented FBM to model turbulence in the inertial
subrange. The Davenport spectrum f(w) =~ <,J2/[1—|—<,‘12]1LH_1/2
extends the model to include production and dissipation. Since
TFBM has the same spectral density, it provides a comprehensive
stochastic model for turbulence.
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Figure reproduced from Beaupuits et al. (2004).



Davenport spectrum for wind gusts

Spectral density of wind gustiness from Davenport (1961). TFBM
provides a stochastic model for the Davenport spectrum.
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Spectral density of wind speed

site in Chile.
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Summary

Tempered power laws

Tempered fractional derivatives

Numerical methods

Tempered fractional Brownian motion

Davenport model for wind speed



10.

References

. I.B. Aban, M.M. Meerschaert, and A.K. Panorska (2006) Parameter Estimation for the

Truncated Pareto Distribution. Journal of the American Statistical Association: Theory
and Methods. 101(473), 270-277.

P. Abry, P. Goncalves and P. Flandrin (1995) Wavelets, spectrum analysis and 1/f
processes. In Wavelets and statistics, 15—29. Springer New York.

B. Baeumer and M.M. Meerschaert (2010) Tempered stable Levy motion and transient
super-diffusion. Journal of Computational and Applied Mathematics 233, 2438—2448.

J. P. Pérez Beaupuits, A. Otarola, F. T. Rantakyro, R. C. Rivera, S. J. E. Radford,
and L.-A. Nyman (2004) Analysis of wind data gathered at Chajnantor. ALMA Memo
497 .

A. Cartea and D. del Castillo-Negrete (2007) Fluid limit of the continuous-time random
walk with general Lévy jump distribution functions. Phys. Rev. E 76, 041105.

A. Chakrabarty and M. M. Meerschaert (2011) Tempered stable laws as random walk
limits. Statistics and Probability Letters 81(8), 989—997.

A. V. Chechkin, V. Yu. Gonchar, J. Klafter and R. Metzler (2005) Natural cutoff in
Lévy flights caused by dissipative nonlinearity. Phys. Rev. E 72, 010101.

S. Cohen and J. Rosinski (2007) Gaussian approximation of multivariate Lévy processes
with applications to simulation of tempered stable processes, Bernoulli 13, 195-210.

A. G. Davenport (1961) The spectrum of horizontal gustiness near the ground in high
winds. Quarterly Journal of the Royal Meteorological Society 87, 194—211.

P. Flandrin (1989) On the spectrum of fractional Brownian motions. IEEE Trans. on
Info. Theory IT-35, 197199.



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

R. N. Mantegna and H. E. Stanley (1994) Stochastic process with ultraslow convergence
to a Gaussian: The truncated Lévy flight. Phys. Rev. Lett. 73, 2946—2949.

M.M. Meerschaert and H.P. Scheffler (2001) Limit Theorems for Sums of Independent
Random Vectors: Heavy Tails in Theory and Practice. Wiley Interscience, New York.

M.M. Meerschaert and H.P. Scheffler (2004) Limit theorems for continuous-time ran-
dom walks with infinite mean waiting times. J. Appl. Probab. 41(3), 623—638.

Meerschaert, M.M., Scheffler, H.P. (2008) Triangular array limits for continuous time
random walks. Stoch. Proc. Appl. 118(9), 1606-1633.

Meerschaert, M.M., Y. Zhang and B. Baeumer (2008) Tempered anomalous diffusion
in heterogeneous systems. Geophys. Res. Lett. 35, L17403.

M.M. Meerschaert and A. Sikorskii (2012) Stochastic Models For Fractional Calculus.
De Gruyter, Berlin/Boston.

Meerschaert, M.M., P. Roy and Q. Shao (2012) Parameter estimation for tempered
power law distributions. Communications in Statistics Theory and Methods 41(10),
1839—-1856.

M.M. Meerschaert (2013) Mathematical Modeling. 4th Edition, Academic Press, Boston.

M.M. Meerschaert and F. Sabzikar (2013) Tempered fractional Brownian motion.
Preprint at www.stt.msu.edu/users/mcubed/TFBM5. pdf

Rosinski, J. (2007), Tempering stable processes. Stoch. Proc. Appl. 117, 677—-707.

C. Tadjeran, M.M. Meerschaert, H.P. Scheffler (2006) A second order accurate nu-
merical approximation for the fractional diffusion equation. Journal of Computational
Physics 213(1), 205—213.



Simulating tempered stable laws
Simulation codes for stable random variates are widely available.

If X > 0 has stable density density f(x), TS density is

e M f (@)
/ e M F(u) du

0
Take Y ~ exp(\) independent of X, (X;,Y;) IID with (X,Y).

ilz) =

Let N =min{n: X, <Yp}. Then Xy ~ fi(x).

Proof: Compute P(Xy <z) = P(X <x|X <Y) by conditioning,
then take d/dx to verify.



Triangular array scheme (SPL 2011)

Take P(X > z) = Czx~® with 1 < a < 2. Triangular array limit

is stable. Define tempering variables:

@)
P(Z >u) = uo‘/ r O le=AT gy

Uu

Replace n=YeXx, by Z, if n=YeX, > Z,.
Triangular array limit is tempered stable.

Exponential tempering: sum of o« and o« — 1 tempered stables.



Tail estimation (CIS 2012)

Hill-type estimator: Assume P(X > z) ~ Cz~ % for z large,
use order statistics X(l) < X(Q) <. < X(n).

Conditional MLE given X, 11y > L > X(,_py:

k
Ty:= ) (log X, _;41)—l0og L)
i=1
k
=) (X(n—it1)— L)
i=1
1 — zk: T(n—i+1)

i=1 kT (n—it1) T a(T2 = T12(p_i11))
A= (k—aTy)/T>
n
R code available at www.stt.msu.edu/users/mcubed/TempParetoR.zip



Testing for pure power law tail (JASA 06)
Null hypthesis Hg : P(X > x) = Cxz~® Pareto for x > L.

Test based on extreme value theory rejects Hg if

1/«
nC
X(1) < <_|nq>

where «,C' can be estimated using Hill’'s estimator

N 1
o = {k_l > ANX( i1y - InX(nk)}]
i=1

Crr = (k/n)(X(p_p))

Simple p-value formula p = exp{—nCX(;O)‘}.



