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Initial-boundary value problem

Fractional diffusion (0 < v < 1) or wave (1 < v < 2) equation

g[:_}_v.QV:f(th), x€QCRY 0<t<T.

Generalized flux

Qu(x,t) = —0"KVu, K >O0.
Classical diffusion (heat) equation in the limit as v — 1, since
Q1 =—KVu.

Homogeneous Dirichlet or Neumann boundary condition, and
initial condition

u(x,0) = up(x) for x € Q.



Riemann—Liouville fractional derivative or integral

If 0 <v <1, then

t _s v—1
gty = 2 / =) sy ds.

If 1 <v <2, then

. _ t (t _ 5)1/72
oa(e) = [ et as

Kernel is weakly singular in both cases.



Weak formulation
Energy space H' = H}(Q) or H}(Q).

First Green identity: if v € H? then

/[—V-(Kvu)]vdx:/Kvu-v\/dx— Qv
Q Q Qan

Bilinear form

A(u,v):/KVu-Vvdx:<Au,v>.
Q

Weak solution u : (0, T) — H? satisfies

(U (t),v) + AOF u,v) = (F(t),v) forall ve H.



Stability of the continuous problem
Putting v = u(t) and integrating,
T T
/ (W(8), u(t)) dt+/ A u(t), u(t)) dt
0 0
-
— [ (e u(e) o
0
Can show via Laplace transforms that

/TA((?l_”u(t), u(t)) dt > 0,
0

and we easily deduce well-posedness:

t
[u(8)]] < [luol +2/ [f(s)ds, 0<t<T.
0



Discontinuous piecewise polynomial approximation
Grid points
O=th<thi<b<---<ty=T.

Subintervals
ln = (ta—1,tn), kn = th — ta_1, 1<n<N.
Basis for polynomials of degree at most L — 1,
X1, X2y -y XL-
Basis function shifted to /,,
Xni(t) =xi(7), t=ta1+7k,, 0<7<1

Seek approximate solution

L
u(x, t) ~ U(x, ) = > UM ) xm(t), t €.
I=1



Discontinuous Galerkin in time (DG)

One-sided limits and jump at t,,
Ul = IimjE U(e), [U]"=ul - U".

t—t;

Require

(Ut X0 + /, [(U'(2), X(2)) + A(8* " U(2), X(t))] dt

—(Un X —I—/(f(t),X(t)) dt
In

for every polynomial X of degree at most L with coefficients in H.

Weakly enforce continuity at t,_1.
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Simplest example: scalar problem, piecewise constants

Consider scalar-valued case U : (0, T) — R (fractional ODE)
with L =1 (piecewise-constants). Then U(t) = U” = Ujfl and
U'(t) =0 for t € I, so for all X" € R,

<U£,X2>+/IA(al—”U(t),xf)dt
_ (U"l,Xf>—|—/l<f(t),Xf>dt

This is just the implicit Euler method,

U Un 1 n
+AZﬁnj = F",

with

1
F" = k/ f(t) dt = average value of f on I,.
nJl,



Piecewise linears for fractional wave equation
Take v =3/2, T=6,A=1,u=1f=0 L=1 N=8.




U converges faster than U!

Compare

N _
E' = max

and

EN

N
20
40
80

160
320
640

0<n<N—1

uz -

u(ts)| = O(k™)

= max |[U" — u(t,)| = O(k"7)

1<n<N

E_
0.83E-05
0.12E-05
0.16E-06
0.22E-07
0.29E-08
0.37E-09

2.820
2.864
2.897
2.924
2.943

Ey
0.47E-02
0.17E-02
0.59E-03
0.21E-03
0.74E-04
0.26E-04

P+

1.482
1.493
1.498
1.499
1.500



Non-uniform time steps

Put
th = (n/N)IT, qg>1.

With ¢ = 1.5 we observe p_ = 3 (superconvergence) and p; = 2
(optimal).

N E o E ps
20 O0.11E-04 0.16E-02
40 0.15E-05 2.877 0.40E-03 1.976
80 0.20E-06 2.921 0.10E-03 1.989
160 0.26E-07 2.947 0.25E-04 1.995
320 0.33E-08 2.963 0.63E-05 1.998
640 0.42E-09 2.973 0.16E-05 1.999



Spatial discretization
Conforming finite element space S, C HY.
Spatially discrete solution wuy, : (0, T) — S, satisfies
() (), v) + A0V up, v) = (F(t),v) forall v eSy,
with up(0) = wop = up and ugp € Sp.

Basis 91, ¥, ..., 9y for Sp, so that

M
u(x, t) & up(x,t) = Y Unm(t)9
m=1

E.g., for a nodal basis,

Um(Xp) =0mp and  Un(t) = up(xm, t).



Method of lines

Mass matrix M = [M,,] and stiffness matrix S = [Spm] with

entries
Mpm = <19m7’l_9p> and Spm = A(ﬁm’ ﬁp)

forl<p<Mandl1<m<M.

System of (ordinary) integrodifferential equations

M
Y MpmUp(£) + Som0; " Um(t) = (F(£),95), 1<p<M,
m=1
or equivalently,

MU’ (t) + So; 7 U(t) = F(t),

with U(O) = Ugp.



Fully discrete solution
Seek Uy : [0, T] — S, satisfying

Ut X+ [ U)X () + A@ U, X(0)] de

In

= (Ut X + / (F(t), X(t)) dt

In

for every polynomial X of degree at most L with coefficients in Sy,
with U27 = ugp. Writing

M L
Un(x, 1) = ) Ullxm(t)0m(x) x € Q, t €,
m=1 |=1

we obtain for 2 < n < N a linear system of the form

n—1
(MRa+S®B,)U"=F"+(Mey)U" ! -> (S& B,V
j=1



Computational cost

At the nth time step, we must use O(nLM) operations to compute
the RHS, and (at least) O(LM) operations to solve the
(LM) x (LM) linear system.

For N times steps, the cost is thus O(N2LM) operations.
Also use O(NLM) active memory locations.

For a classical diffusion equation, total cost is only
O(NLM) operations and O(LM) active memory locations.

Conclusion: solving a fractional diffusion equation costs N times as
much as solving a classical diffusion equation.



Fast time stepping algorithms
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» Schadle, Lépez-Fernandez and Lubich, SIAM J. Sci. Comput.
28:421-438, 2006

> Deng, J. Comput. Appl. Math. 206: 174-188, 2007.
» Li, SIAM J. Sci. Comput. 31: 4696-4714, 2010.



Degenerate kernel
For simplicity, restrict to scalar (M = 1) problem with
piecewise-constants (L = 1) in time.
Need a fast way to evaluate

tn—l n—1 .
_ i
//n /O B(t, s)U(s) ds dt — j}_lj By U

Easy if 3 of the form

R
B(t,s) = de(t)tr(s)
r=1
because R
Bn' = ﬁ(t, 5) ds dt = ¢rn¢r'a
=0 2 ént
where

¢rn:/ln¢r(t) dt, @ﬁrj:/lj@b,(s) ds.



Degenerate kernel

Compute the sum as

n—1 n—1 R
D Bl =0 by lh Zgbmw Y
j=1 j=1r=1

where

VTN U) =) gl = U+ IR(U),

At nth time step, overwrite W7=2(U) with W7~1(U), and compute
sum using O(R) operations.

Reduce total cost from O(N?) operations and O(N) storage to
O(RN) operations and O(R) storage.



Weakly singular kernel

But fractional wave equation has the kernel

(t —s)»—2

—, 1 2.
-1 "%

p(t,s) =

Key idea: if t € I, and s € I; are well-separated, then we can
approximate [3(t,s) by a degenerate kernel.

Leads to a variant of the panel clustering algorithm for boundary
element methods (Hackbusch and Nowak, 1989).



Well-separated intervals

Suppose

b—a
0<a<s<b<c<t<d<T and b§n<1
C_
b-a c-b
- = .
[ ;
0 a b [ d

Change of variable

s:%[(l—a)a+(1+a)b]

takes o € [-1,1] to s € [a, b].



Tchebyshev interpolation
Denote the Tchebyshev points for [a, b] by

st =1[(1—-o/)a+ (1+0.)b], oy = COS

for0<r<R. Forselab]andt€|c,d,



Tchebyshev interpolation

Local degenerate kernel satisfies
B(t,spP) = p*P(t,s7P),  0<r<R,

and standard error estimate for Tchebyshev interpolation of
analytic functions gives

|675(t,5) = B(t,s)] = O(p™F)

for
scljCla bl and tel,Clcd],

with p > 1 satisfying p + p~% < 4~ — 2.



Accuracy in practice




Cluster tree

A clusteris a set C = {l;, ljy1,. ..

consecutive subintervals.

Y (1<) <n<N)of




Admissible cover

Given I, and n € (0, 1], a simple recursive procedure constructs a
unique minimal admissible cover for [ty, t,—1].




CPU times for piecewise constants, 2D problem

Fractional diffusion equation (v = 1/2), N = 16000 times steps,
Q =(0,1) x (0,1), bilinear finite elements with M = 6241 degrees
of freedom, Taylor expansions of kernel.

Slow Fast
r — 4 5 6
Error | 0.129E-03 | 0.789E-03 0.129E-03 0.129E-03
Setup 49.0s 0.64s 0.66s 0.70s
RHS 916.2s 16.76s 20.48s 23.09s
Solver 7.7s 7.17s 6.87s 7.13s
Total 972.9s 24.57 s 28.02s 30.91s
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