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Basic Problem

Mathematical Fundamentals

Problem: Find a numerical solution to the fractional order VP
Dloy(t) = f(t,y(1))
yWO) = ¥ (k=01,....[a] - 1)

for
te0,T]

where
o0 = Caputo differential operator of order «.

Inthistalk: 0 < o < 1
(generalization to a > 1 usually no problem)
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Basic Problem

Classical Approach

@ Use uniform mesh

f=j-h
where T
h:N

with some suitably chosen parameter N € N,
@ discretize the fractional operators,
@ solve the resulting discrete problem

(Oldham & Spanier 1974, Lubich 1983ff., ...)
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Basic Problem

Disadvantage

@ Fractional differential operators are not local:

t
DEyy(t) = r(,f_a) = syeory(syds

where n = [«]

@ Treatment of process history increases computational
complexity

@ Standard solution approach has O(N?) operation count
@ Integer-order equations: operation count is only O(N)
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Basic Problem

Example: Adams-Bashforth-Moulton Method |

Method of P(EC)™E type (Di., Ford & Freed 1999ff.), m = [1/«]

Case 1: Smooth solution

z 9.E-03
DOO y( ) y(t) + tz —t 1.E+02 e 2.E-03
1.6 0.6 .
+r2; - rt1 N 1.E+01L\'\_\\\—></:/ 2804 £
. . @ 5.E-05 2
( ) ( % 1.E+00 ~ oo §
y(0)=0 e ol 2
.o 8.E-07 £
exact s<>2Iut|on. o ,/:s — .
y(t) = t - t / —=—slope = 2
1.E-03 [ 1.E-08

100 1000 10000
number of nodes
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Basic Problem

Example: Adams-Bashforth-Moulton Method |

Method of P(EC)™E type (Di., Ford & Freed 1999ff.), m = [1/«]

Case 1: Smooth solution

9.E-03 —=—slope =-0.
DOO y( ) y(t)+t2_t 2.E-03 | e
n ot16 B {0-6 ] 3.E-04\\\
r(2.6) r(1.6) % 5.E-05 \'-\_\\
. S 6.E06 I
y(0)=0
exact solution:
y(t) — t2 - t 9.E-08
1.E-08

0.01 0.09 0.70 6.00  40.00 200.00
run time [s]
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Basic Problem

Example: Adams-Bashforth-Moulton Method |

Method of P(EC)™E type (Di., Ford & Freed 1999ff.), m = [1/«]

Case 1: Smooth solution

[s]

5 9.E-03

DOO y( ) y(t) +t° -t 1.E+02 //2.E-03 f

N 2t {06 o A1 ew

r(26) r(1.6) ¢ ses 3

(26) (1.6) 'E 1.E+00\\ / ]

g 6.E-06 &

y(0)=0 1.E-01 -><\' SE07 E

exact solution: o )/"; Ope=.1,e\ 3

D=t —t = ~ Slope = 9.E-08 £
v 1.E-03 i [2 \.\'1.E-08

700 1000 10000

number of nodes
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Basic Problem

Example: Adams-Bashforth-Moulton Method |

Method of P(EC)™E type (Di., Ford & Freed 1999ff.), m = [1/«]

Case 1: Smooth solution

D%y(H)=—y(t)+ Bt e s
2t 08 T irw
TT(26) T(16) 5 ses
y(O) —0 % 6.E-06 }
exact solution: : e \'\\_\
y(1) = 2 _ ¢ E 9.E-08 \_\\

1.E-08

0.01 0.09 0.70 6.00 40.00 200.00
run time [s]
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Basic Problem

Example: Adams-Bashforth-Moulton Method |

Method of P(EC)™E type (Di., Ford & Freed 1999ff.), m = [1/«]

Case 2: Equation with smooth fractional derivative of solution

Dy = -0 L. e
40320 t7'6— g \9-c) r(5 2) t3 8 \Evot / 3.E-04 E
re6)  ras’ AaR™

9 3 3 g 1.E+00 6.E06 E
v Y02 44 = : ®
+4 r(1.4)+ <2t t ) 1.E-01 / sE0 B
4(0) =0 1802~ :z::gz{:: \-\ 9.E-08
exact solution: oo 1000 oo0p %
number of nodes
y(t) =& —3t*2 + Z1‘0 4
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Basic Problem

Example: Adams-Bashforth-Moulton Method |

Method of P(EC)™E type (Di., Ford & Freed 1999ff.), m = [1/«]

Case 2: Equation with smooth fractional derivative of solution

D'y (1) = —(y(1)*? o = sope =11

40320 76 T(52) 00§ s

r(8'6) r(4 8) £ 5.E05 \_\

3§ -
—l—gr('l 4)+ <3t0‘2— l'4> ; 6.E-06 \.\
4 2 £ 8.E-07 \I\

y(0) =0 2£08 ~

exact solution: o LEO8 T 009 070 600  40.00 200.00
run time Is]

y(t) =12 -3t*2 + Zto-“'

Kai Diethelm Numerical Fractional Calculus with Non-Uniform Meshes



Basic Problem

Example: Adams-Bashforth-Moulton Method |

Method of P(EC)™E type (Di., Ford & Freed 1999ff.), m = [1/«]

Case 3: Smooth right-hand side (nonsmooth solution)

z 9.E-03

D*O y( ) = _2y(t) 1.E+02\\ /_//2.E-03
y(O) = 1 LEs01 \-\/?< 3E04 §
© 5.E-05 &
exact solution: £ 10 / .
i el R
y(t) = Ega(—2x%%) :

= / 8.E-07
1.E-02p - slope =-0.8

9.E-08

—=-slope =2

1.E-03 [ 1.E-08
100 1000 10000

number of nodes
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Basic Problem

Example: Adams-Bashforth-Moulton Method |

Method of P(EC)™E type (Di., Ford & Freed 1999ff.), m = [1/«]

Case 3: Smooth right-hand side (nonsmooth solution)

9.E-03 - slope =-0.4
Doy(t) = —2y(1) e | T e
y(0) = 1

3.E-04 B
exact solution:

5.E-05
y(t) = Ega(—2x%%)

i

6.E-06

max. absolute error

8.E-07

9.E-08

1.E-08
0.01 0.09 0.70 6.00  40.00 200.00

run time [s]
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Algorithmic Solution Strategies

High Order Methods

(Lubich 1983 ff.)

Basic idea:
Construct algorithm such that

Error = O(NP), p large

= High accuracy can be obtained with small N
= O(N?) computational cost becomes acceptable

Main tool: Set of starting weights added to numerical method.
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Algorithmic Solution Strategies

High Order Methods

Important observation (Di., Ford, Ford, Weilbeer 2006):

@ Starting weights are given as solutions to linear system of
equations

@ Coefficient matrix is of generalized Vandermonde form

© Depending on «, system may be mildly (o = 0.5) or very
strongly (o = 0.4999) ill conditioned

© Effective computation of starting weights is potentially
subject to high inaccuracies

© Numerical results are very good in theory but possibly very
poor in practice
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Algorithmic Solution Strategies

High Order Methods

Example: Fractional form of BDF5
Dyy(t) = —2y(t) +0.2sint, y(0) =1

a=1/2

—h=0.004

00 02 04 06 08 10 12 14 16 18 20
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Algorithmic Solution Strategies

High Order Methods

Example: Fractional form of BDF5
Dyy(t) = —2y(t) +0.2sint, y(0) =1

a=1/2

05 —h=0.004
—h=0.0004

00 02 04 06 08 10 12 14 16 18 20
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Algorithmic Solution Strategies

Order Methods

Example: Fractional form of BDF5

Dyy(t) = —2y(t) +0.2sint, y(0) =1

a=1/2

g

—h=0.004
—h=0.0004

00 02 04 06 08 10 12 14 16 18 20
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a = 0.4999

A

—h=0.004

00 02 04 06 08 10 12 14 16 18 20
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Algorithmic Solution Strategies

Order Methods

Example: Fractional form of BDF5

Dyy(t) = —2y(t) +0.2sint, y(0) =1

a=1/2

g

—h=0.004
—h=0.0004

00 02 04 06 08 10 12 14 16 18 20
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a = 0.4999

00 02 04 06 08 10 12 14 16 18 20
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Algorithmic Solution Strategies

High Order Methods

Example: Fractional form of BDF5

Dyy(t) = —2y(t) +0.2sint, y(0) =1

a=1/2

05 —h=0.004
—h=0.0004

00 02 04 06 08 10 12 14 16 18 20

a = 0.4999

00 02 04 06 08 10 12 14 16 18 20

Conclusion: Methods works for some, but not all, a

helm
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Algorithmic Solution Strategies

Fixed Memory

(Podlubny 1999)

Rewrite given IVP in Volterra form,

Ma)

introduce parameter 7 > 0 (fixed memory length),

[a] -1 tk 1 t
Y= 3 YOO + oy [ (-9 (s ()
k=0 ' 0

replace Volterra equation for t > 7 by

[a] -1 tk 1 t
V0= 3 YOO+ e [ (19" s ps)es
k=0 =
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Algorithmic Solution Strategies

Fixed Memory

Solve modified equation (with fixed memory) via numerical
scheme with O(N—P) error bound:

@ Computational complexity is reduced to O(N) for
sufficiently small 7
(Podlubny 1999)

@ Solution of original equation can be approximated with
O(N—P) accuracy only if 7 ~ T
(Ford & Simpson 2001)

Approach can only yield either low computational cost
or satisfactory accuracy, but not both.
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Algorithmic Solution Strategies

Graded Meshes

(Brunner 1985; Pedas, Tamme, Vainikko, ...)

Basic idea:

error
run time

Improve ratio
@ by reducing the error
@ without changing the run time and
@ without changing the underlying approximation operator

@ thus avoiding problems introduced via high order operators
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Algorithmic Solution Strategies

Graded Meshes

Fundamental approach:

@ Reason for low convergence order:
Poor smoothness properties of solution near the origin

@ Remedy: Adapt structure of mesh to behaviour of solution
@ Precise form:

j (m/a)
Graded mesh t,-:<N> T, j=0,1,...,N

@ Finer node spacing where required
Example: uniform mesh, graded mesh (m =2, a = 0.8)

(L)IIIIIII RN Y Y [y B I
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Algorithmic Solution Strategies

Graded Meshes

Example: Smooth solution (case 1 above)

= —+— equispaced: slope = -1 9.E-03 9.E-03 —=— equispaced: slope = -0.5
LES0 — = — graded: slope = -2 03 2E03 - -+ - graded: slope = -1
——slope =2 e N ~
N 3604 5 § 3E0ar [T
1LE01 s & \\
e
2 N 5.E-05 2 £ 5E05 AN '\_\
2 1.E+00) o K K = e
5 N [™~J6.E-06 8 S 6.E-06 Su T
/}( N % % o
1.E-01 b g
N 8.E07 £ E 8.E-07 <
= j Su
E02 S| 7 jeE-08 9.E-08 e
1.E-03 1.E-08 1.E-08'
100 1000 10000 001 009 070 600 40.00 200.00
number of nodes run time [s]

@ Expected improvements achieved if N is not too large
@ Performance deteriorates as N is increased further
@ Same behaviour for other examples

@ Reason: Computation of quadrature weights becomes
numerically unstable (significant cancellation of digits)
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Algorithmic Solution Strategies

Graded Meshes

Possible improvement:
@ Subdivide interval as [0, T] = [0, T]U [T, T]
@ Use graded mesh as above with cN subintervals on [0, T],
where ¢ <« 1
@ Use uniform mesh with (1 — ¢)N subintervals on [T, T]
= Problem occurs only for much larger values of N

_ —=—equi slope = -1
= = graded: slope = -2 9.E-03 9.E-03 ——equi slope = 0.5
1.E+02— ™" i slope =2 / 2.E-03 2.E-03] — —=— - graded: slope = -1
——slope =2 . . N~ e combined: slope =-1
%ﬁ 3.E04 5 § 3.E-0afy [ ]
TER01 o - g £ [
2 . 5.E-05 & 2 5E05 . T~
E g E 2 “m
£ 1.E+00 . 3 ] -
2 /\!x\ Pe—Jse0s 3 £ 606 L3
x. % 3 SN
1.E-01 T 8.E07 & E 8E07 e
S ) S
NS .
1ED: ST [9.E08 9.E-08 o
. it
1.E-03 “J1.E-08 1.E-08
100 1000 10000 0.01 009 070 600 40.00 200.00
number of nodes run time [s]
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Algorithmic Solution Strategies

Automatic Stepsize Control

General idea:
@ Mesh not defined a priori
@ Start with certain step size
@ Find approximation and estimate its error

@ If error estimate too large then reject step
and retry with smaller step size

@ If error estimate very small then increase step size
(reduction of computational cost)

@ Otherwise continue working with present step size

= Fine mesh used only where required by properties of
solution

Open question:
@ Reliable and computationally cheap estimation of error?
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Algorithmic Solution Strategies

A General Observation

@ Two types of meshes exist in numerical scheme:
o Find approximate solution on primary mesh {fo, t, ..., In}
e For each j, discretize the integral

/ (4= ) f(s. y(s))ds
0

in Volterra form of IVP on secondary mesh {7;, : 0 < < N;}
@ Overall complexity = 3"} | N,
@ Traditional methods require that both meshes coincide:

N =jand 75, =t (1=0,1,2,....N))

: .1
= complexity = 3", j ~ §N2
@ Potential improvement: use {7; ,} with much smaller N;
without increasing order of associated error
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Algorithmic Solution Strategies

Logarithmic Memory |

Kernel of integral operator at grid point ¢ is (; — s)*~"
9|
8
6|
5
]
3|
2
1
o 1 2 3 4 5
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Algorithmic Solution Strategies

Logarithmic Memory |

Kernel of integral operator at grid point ¢ is (; — s)*~"

near {;:

[ emeitor =502 2] kernel is large

U
precise approximation
of integrand
necessary

U
fine secondary mesh
in this region

o 4 M W s oo N @ ©

of
~
w
IS
o
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Algorithmic Solution Strategies

Logarithmic Memory |

Kernel of integral operator at grid point ¢ is (; — s)*~"

away from ¢;:
kernel is small
\
less accurate but
cheap approximation
of integrand suffices
\
coarse secondary
mesh in this region

& a0 o N @ ©

— kernel for =5, a = 1/2

Kai Diethelm

near tj:

kernel is large

\
precise approximation
of integrand
necessary

\
fine secondary mesh
in this region
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Algorithmic Solution Strategies

Logarithmic Memory |

Given step size h of primary mesh,

@ select “characteristic time” M > 0 (should be M = kh, k € N)
and w € {2,3,4,...} (scaling parameter)
@ for each primary mesh point ¢

o find smallest integer m such that t; < w™'M
e decompose
[0, 8] = [0, — w™M] U [t; — w™M, t; — w™" M]
U Ul —w'M t — wOMJU [t — M, t]
e define secondary mesh on each subinterval, starting from right:
step size h on first and second subintervals,
step size wh on third subinterval,
step size w?h on fourth subinterval, .. .,
step size w~"h on penultimate subinterval,
suitable combination of above step sizes on last subinterval

(Ford & Simpson 2001)
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Algorithmic Solution Strategies

Logarithmic Memory |

Consequence: N; = O(Inj)

Example: t; =21, h=1/10,w =2and M = 1

@ Total number of nodes for uniform mesh: 211
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Algorithmic Solution Strategies

Logarithmic Memory |

Consequence: N; = O(In))
Example: t; =21, h=1/10,w =2and M = 1

0 5 13 17 1920 21

@ Total number of nodes for uniform mesh: 211
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Algorithmic Solution Strategies

Logarithmic Memory |

Consequence: N; = O(Inj)

Example: t; =21, h=1/10,w =2and M = 1

| | | i
| | | ]

0 5 13 17 1920 21

@ Total number of nodes for uniform mesh: 211
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Algorithmic Solution Strategies

Logarithmic Memory |

Consequence: N; = O(Inj)

Example: t; =21, h=1/10,w =2and M = 1

@ Total number of nodes for uniform mesh: 211
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Algorithmic Solution Strategies

Logarithmic Memory |

Consequence: N; = O(Inj)

Example: t; =21, h=1/10,w =2and M = 1

@ Total number of nodes for uniform mesh: 211
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Algorithmic Solution Strategies

Logarithmic Memory |

Consequence: N; = O(Inj)

Example: t; =21, h=1/10,w =2and M = 1

@ Total number of nodes for uniform mesh: 211

Kai Diethelm
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Algorithmic Solution Strategies

Logarithmic Memory |

Consequence: N; = O(Inj)

Example: t; =21, h=1/10,w =2and M = 1

h=0.2 (once)
h 08(6 X) |
§ C

0 5 13 17

@ Total number of nodes for uniform mesh: 211
@ Total number of nodes for logarithmic mesh: 58
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Algorithmic Solution Strategies

Logarithmic Memory |

Overall error bound:
@ Traditional approach (full secondary mesh):

chP with some p > 0,

@ Ford-Simpson logarithmic secondary mesh:

T P
c (Mwh> = ¢'hP with same p

= unchanged order of magnitude of error
but significantly reduced computational cost
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Algorithmic Solution Strategies

Logarithmic Memory |

Example: Smooth solution (case 1 above)

number of nodes
1000

9.E-03
2.E-03
§ 3E04
s
2
° £ 5E05
E 2
=1, 2 6.E-06
g
1.E-01 ~= Full mesh: slope = -1 E 8.E-07
—=— Full mesh: slope = -0.5
4= Full mesh: slope = 2 - ! mosh, lope = .0.75
1602 -~ Ford/Simpson mesh, w = 2: slope = -1.5 =08 - P pe =-0.
y -~ Ford/Simpson mesh, w = 4: slope = -0.83
. —~ Ford/Simpson mesh, w = 2: slope = 2 1.E-08
1.E-03 - Ford/Simpson mesh, w = 4: slope = -1.65 001 009 070 6.00 40.00 200.00
- Ford/Simpson mesh, w = 4: slope = 2 run time [s]

Similar results for other examples
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Algorithmic Solution Strategies

Logarithmic Memory |l

Modification of Ford/Simpson idea (Di. & Freed 2006):
Given step size h of primary mesh,

@ select “characteristic time” M = kh with fixed k € {4,5,...}
and w € {2,3,4,...} (scaling parameter)
@ for each primary mesh point ¢

o find smallest integer m such that t; < w™'M
e decompose
[0,8] C [t — w™ M, t; — w™M] U [t — w™M, t; — w™= T M]
U-- Ut — w2M, t; — wM] U [t; — wM, t]
and set integrand := 0 to the left of 0
e define secondary mesh on each subinterval, starting from right:
step size h on first subinterval,
step size wh on second subinterval, ...,
step size w™~'h on penultimate subinterval,
step size w™h on modified last subinterval
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Algorithmic Solution Strategies

Logarithmic Memory |l

Properties:

@ N; = O(Inj)
@ Very efficient memory management possible
@ Closely related to panel clustering (McLean 2012)
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Algorithmic Solution Strategies

Shishkin Meshes

Equations with singular perturbations

Example:
—eDloy (1) = DLy (1) + c(ty(t) = f(1)
y(0)=y(1) = 0
0<pf<1<a<? lgi1b()>0, c(t) > 0)

= Solution exhibits boundary layer
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Algorithmic Solution Strategies

Shishkin Meshes

1.0 1.0 [
0.8| 038
—a=2,p=1

06 06
0.4 0.4
0; [—a=2p=1} 02
0. 0.

&o 01 0.2 0.3 0.4 05 06 07 08 09 1.0 0?000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
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Algorithmic Solution Strategies

Shishkin Meshes

Classical case (8 =1, a = 2):

Use Shishkin mesh with N subintervals (¢ < N7), i.e.
@ introduce transition parameter o € (0,1)
(depending on N and «; typically o = 2(inf; b(t))~'eIn N)
@ use N/2 equally large subintervals on (0, o),
@ use N/2 equally large subintervals on (¢, 1),
@ apply (upwind) finite difference formula with this mesh.

(Roos, Stynes & Tobiska 2008; Lin3 2010)
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Algorithmic Solution Strategies

Shishkin Meshes

= Fine (computationally expensive) mesh is used only where
necessary.
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Algorithmic Solution Strategies

Shishkin Meshes

Example: Initial value problem
—107*D!Py(t) — Dloy(t) = -1, y(0)=0,y'(0) = 9199.08
Solution with uniform mesh:

1.0

0.8

0.6

0.4

0.2

00 01 02 03 04 05 06 07 08 09 10
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Algorithmic Solution Strategies

Shishkin Meshes

Example: Initial value problem
—107*D!Py(t) — Dloy(t) = -1, y(0)=0,y'(0) = 9199.08
Solution with uniform mesh:

i

0.8

n =

n

N o=
- &P
-

0.6

0.4 SS—

0.2

069000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
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Algorithmic Solution Strategies

Shishkin Meshes

Example: Initial value problem
~107*DlPy(t) - Dloy(t) = -1, y(0) = 0,y(0) = 9199.08

Solution with uniform mesh:

0.6

05 / \

0.4

03

0.2 — 256000 nodes
— 128000 nodes

0.1 64000 nodes
— 32000 nodes

0.0
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Algorithmic Solution Strategies

Shishkin Meshes

Open questions in fractional case (« < 2 or 5 < 1):

@ Width of boundary layer

@ Influence of changes of sign of coefficients
(broken symmetry properties)

@ Influence of memory on boundary layer
(dependence of boundary layer on «, 3)

@ Suitable choices for mesh
(in particular: value of mesh transition parameter)
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Parallelization

Shared Memory Approach (OpenMP)

Basic idea for hardware platform with P cores:
@ Divide set of nodes into blocks of P successive nodes each
@ Handle blocks in parallel (one core per node of block):
e Each node of block needs to take history into account

(all previous nodes)
e Split up history into nodes from earlier blocks and

e Compute first part of history in parallel for all nodes of
current block
(no interaction required; ideal scalability;
main part of work except for the first few blocks)

e Compute sequentially
(each node needs to wait for results of predecessors;
small part of work only)

(Di. 2011)
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Parallelization

5 history from
7] h current block
< = sequential

--------------------------
-------------------------

history from
earlier blocks

= parallel

current block
of nodes

~a | time
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Parallelization

Performance analysis using Score-P measurement system

(www.score-p.org)
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& [ 1 main =
6.40e4 veclnit
1 abm
6.40e4 vecClear
43 18_gamr
6.40e4 vecinit
1 vecCopy
111 yolatt
45429 150mp parallel @adams-nonequispaced-
6.40e4 vecFree
1.28e5 exakt_yglatt
6.40e4 vecfree

Profiling shows
@ very good load balancing,
@ very small sequential part

& O - generic cluster

- Node card i01r11c03509

&0 Process
226 CPU thread 0
233 U thread 1
227 CPU thread 2
2.46 CPU thread 3
226 CPU thread 4
226 CPU thread 5
247 U thread 6.
242 U thread 7
2.40 CPU thread 8
257 U thread 9
226 CPU thread 10
258 CPU thread 11
252 CPU thread 12
2.44 CPU thread 13
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Parallelization

Performance analysis using Score-P measurement system
(www.score-p.org)

v TORTIRTRTWTNT TR RRYYYY TWRYIIY Y %

Tracing shows
@ rather poor efficiency (much waiting time) only in very early
part of simulation (left)
@ very high efficiency (almost no waiting time) in later parts
of simulation (right)
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Observed performance:

40— 1000 nodes
— 2000 nodes —_
35 2
4000 nodes
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16000 nodes //
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g 128000 nodes > = relative problem size = 16
151 — ideal / 2 relative problem size = 64
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g e S
10 = \\
5
0
0 5 10 15 20 25 30 3 40 1 s " 16
cores

cores

@ Very good strong (left) and weak (right) scaling
@ Can be used for full memory or logarithmic memory
@ Can be used for uniform or non-uniform primary meshes

@ Same behaviour for corresponding approach on distributed
memory systems (using MPI)
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Thank you for your attention!

diethelm@gns-mbh.com

k.diethelm@tu-braunschweig.de

gns
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