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Fickian and anomalous diffusion processes

@ Diffusion processes

o describe the spreading of particles due to their random movements

e are ubiquitous in nature, natural and social sciences, and engineering
@ Since it was proposed in 1855, the classical diffusion equation

o has been widely used in different disciplines

o has generated satisfactory results in various applications

@ However, certain diffusion processes cannot be described by the
Fickian diffusion equation. They exhibit anomalous diffusion behavior

e Photocopiers and laser printers played an important role in the study
e In groundwater contaminant transport, remediation

@ is often not as effective as predicted by the classical diffusion equation
@ may take decades or centuries longer than previously thought
e Increasingly more diffusion processes have been found to be
non-Fickian (Metzler & Klafter, Phys. Rep., 339:1-77, 2000)
@ signaling of biological cells, anomalous electrodiffusion in nerve cells
o foraging behavior of animals, electrochemistry, physics, finance
o fluid and continuum mechanics, viscoelastic and viscoplastic flow
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One-dimensional transient space-fractional diffusion equation

ou 0%u 0%u
E - d+($,t)w - d_(l',t)? - f7 T € (xbx’l‘)a le (OaT]7 (]_)

u(xy,t) = u(z,,t) =0, t €0, 7], u(z,0)=wuo(x), x € [z, 2,].
@ 1 < a < 2 is the order of the anomalous diffusion

@ d; and d_ are the left- and right-sided diffusivity coefficients
@ The left- and right-sided fractional derivatives are defined by

[(o—20)/h]
0%u(z,t) . 1 ()
— = lim g, ‘u(x — kh,t),
O+ h—0+ h kZ:O k (2)
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° g,ga) i= (=1)%(¢) with () being the fractional binomial coefficients.
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Fractional finite difference method

@ The fully implicit finite difference method with a direct truncation of
the series in (2) is unconditionally unstable (Meerschaert & Tadjeran,
J. Comput. Appl. Math., 2004)!

@ They utilized a shifted Griinwald approximation to derive an
unconditionally stable finite difference method

um _um—l d+,m i+1 ,m N—i+1
o - S g - > 9 = T (3)

k=0
@ The finite difference method can be written in the matrix form

(I4+ AtA™)u™ = ™=t 4 ALF™ (4)
e A™ is a full (or dense) diagonally dominant M-matrix.

@ The scheme is only of first-order accuracy in space and time!
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Computational and memory cost of fractional numerical methods

@ The stiffness matrix A™ is a dense or full matrix, traditionally
o The scheme was inverted in O(N?3) of operations per time step
o The scheme was stored in O(N?) of memory

@ Each time the mesh size and time step are refined by half
e The total number of unknowns increases 2 times for 1D problems

o The computational work increases 2% x 2 = 16 times
@ The memory increases by 4 times.

o The total number of unknowns increases 4 times for 2D problems

o The computational work increases 4% x 2 = 128 times
@ The memory increases by 16 times.

e The total number of unknowns increases 8 times for 3D problems
o The computational work increases 8% x 2 = 1024 times
@ The memory increases by 64 times.
@ The significantly increased computational and memory cost of the
numerical methods calls for the development of fast and faithful
numerical methods with efficient memory storage.
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A fast two-step operator-splitting finite difference method

(W., K. Wang, & Sircar, J. Comput. Phys., 2010)

@ The development of a fast methods replies on the stiffness matrix

A™ = [af /W),y
—(d" +d; )9 >0, j=1
—(d gy + e < 0, j=i—1,
aly =1~ gy <0, =ikl ()
—d g <0, j<i—1,
~ _d;’mg](‘i)i-i-l <0, j>i+1.

Q@ A™ is a full matrix
@ A™ has a special structure
© The information A™ is sparse (=~ 3N).
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@ We utilize the following properties of g,(f) = (—1)]’“(2‘) to conclude

gga) —a<0, 1= g(a) > géa) > géa) >

Zgl(ca) _ Zg(a) (m > 1), (6)
k=0

- >0,

5 = r(—r(il)cr_(l::)r 0 r(—al)kaﬂ (1+ O(%))

o a;;t+r/a;; decay at a rate of 1/k“*! as k — oo.

N
aji= D lail
j=1,j#i
SRR VCRTCND DI LRI SRV I
k=0,k#1 k=0,k#1
> = e - O ) Y gt o
k=0,k#1

o A™ is a strictly diagonally dominant M-matrix, so the scheme is
monotone.
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Based on the properties of the stiffness matrix A™ of the difference method

(I+ AtA™) ™ = u™ 1 + AtF™,

o Split the stiffness matrix A™ as A™ = A]" + A" with the properties
o A}' contains the 2k + 1 diagonals of A™ and is zero elsewhere
o A;' approximates A" asymptotically as N — oo
o AT'v can be computed efficiently for any vector v
@ Derivation of a fast operator-splitting finite difference method
o Substitute the decomposition A™ = A" + A" into (4).

o Move AY'u™ to the right-hand side and approximate the u™ by
a linear extrapolation of u™~2 and v™~ 1.
(I4+ AtATY U™ = (1 — 2AtAT) ™1 + AtAT U™ =2 + AtF™, m > 1,
(I+ AtA ) Ut = (11— AtAD WO + Atf.
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Scheme (5) with k = log N has the approximation property
1A [l _ IA™ = ARl _

2 = — =0O(log"™N) — 0 as N - oo.  (9)
e I

R S N Sl
[>k=log N

= h7" max (4" + ™) ZZ F(al)kaﬂ (1 + O(%))
>k (10)

=0 max (4" + d*vm)o(i),

The ratio of the two preceding estimates gives the desired result.
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The stiffness matrix A™ can be stored in 3N + 2 of memory. \

A™ can be decomposed as

AT = b= (diag(d ™), AP + diag(d, ™) ARY) (1)

with A% being defined below and A% = (A%N)T

g g 0 o 0 0]
géa) g e o
AN | 95" g§a>
.- o 0
g gl gl
i gz(?) T

o h, (dF™N,, (d;"™)N,, and A} " contain 3N + 2 parameters.

Hong Wang, University of South Carolina

Fractional PDEs, methods and analysis

June 3-5, 2013



A™v can be evaluated in O(N log N) operations for any vector v.

The matrix ACL”N is embedded into a 2N x 2N circulant matrix Con, 1,

A%’N C%’N v
Gz N EE N = ;
s AL 0
[0 gy g g ]
0 0 gy gl
0 0 0 :
o=
0 ... 0 0 g\
Lo 0 0 0 0 |
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We can similarly define another 2N x 2N circulant matrix Con, g

A circulant matrix Cyn can be decomposed as
CQN = F2_]\} diag(FQNCQN) FQN (13)

where Iy is the 2N x 2N discrete Fourier transform matrix and copn
is the first column vector of Cyy.

Fynuan can be carried out in O(N log N) operations via FFT.
Conugn can be evaluated in O(N log N) operations.

ASN yand A% u can be evaluated in O(N log N) operations.
A™u can be evaluated in O(N log N) operations.

The right-hand side of the finite difference method (5) can be
evaluated in O(N log N) operations!

The fast finite difference method (5) can be inverted in O(N log® N)
of operations per time step using O(N log N) of memory.
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@ Remarks on the fast finite difference method

e It is not lossy, since no compression is involved.

e Stability and convergence of the method yet to be proved

o A fast conjugate gradient iterative solver can be used to solve the
original (single-step) finite difference method, which has proved
stability and convergence.

@ Development of other fast methods

e A fast Crank-Nicolson scheme of similar computational and storage
cost (Basu & W., Int'l J. Numer. Anal. Modeling, 2012).
Crank-Nicolson scheme with a Richardson extrapolation in space
was originally developed by Tadjeran et al. to recover second-order
accuracy in space and time (J. Comput. Phys., 2006).

e A Eulerian-Lagrangian method for space-fractional advection-diffusion
equation (K. Wang & W., Adv. Water Resources, 2011)

e Finite and finite volume methods (W. & Du, J. Comput. Phys., 2013).
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Multidimensional transient space-fractional diffusion equations

ou(x,y,t) 0%u(x,y,t) 0%u(zx,y,t)
ot - d+ (l‘a Y, t) aera d_ (IE, Y, t) o
OPu(z,y,t) OPu(z,y,t) B
—e+(x,y,t) 8+y5 _6—($>yat) 8_y5 - f(mayat)7

(14)
(x,y) €Q, 0<t<T,

u(x,y,t) = uD(x7y’t)> (l‘,y) €0, te [OaT]a
u(x,y, 0) = uo(xay)a ($7y) €.

Here Q := (z;,2,) X (y1,yr) is a rectangular domain. 1 < o, 5 < 2.
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A two-dimensional finite difference method and its ADI scheme

(Meerschaert et al., J. Comput. Phys., 2006)

um. — ’U,m~_1 d+ m i+1 d— ,m Ni—i+2
i,J i,j
At o ng uz k+1,5 — Z gk uz-i—k 1,5
+ M J+1 —Mm Na—i+2

5 (15)
Zg( u 7] =l+1 Z gl 7]-i-l 1 — fz,]a
=0 k=0

1<i<Ny, 1<j<Ny, m=12,...,M.
Let N = N1 N,. Introduce N-dimensional vectors u™ and f™ defined by

= [ R e i el
= [ffrfp"' 7f]7\71717f17:12’... 7f]7Vn172,... ’f{thzv"' ’fﬁ},NQ}T
The finite difference method (15) can be expressed in the matrix form
(I+ AtA™ U™ = ™1 4+ AtF™. (17)
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Form=1,2,..., M, at time step t"":

@ solve the following equations in the x-direction (for each fixed ;)

d+mAt i+1 7mN1 —i+2
m,* a m* a
U — gk Ui k1,5 — Z Ik z+k 1,5
(18)
m1+At5’;, 1<i< N, 1<j< N,

@ solve the following equations in the y-direction (for each fixed x;)

e mAt EAR - mAt N2—it2
u (N Zgy 7] =l+1 Z gl ,J+l—1
1=0 (19)
:u?,?*, 1<j<Ny, 1<i<N.
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Let o == [ul, ugy, -~ s ulfy ;17 and £ = [f%, - fR ;]7. Then (18)
are written as fully decoupled one- d|menS|ona| systems

(Iny + ALATT) U™ = WP H ALFR, 1< j<Np.  (20)

J
R m m m T k| m,* m,x m,x 1T
Let v := [, ufly, -+ sy, " and v = [Uu 7%2 b g for
1 =1,..., N1 be the rearrangements of uj and u *forj=1,...,No.

Then (21) can be rewritten as fully decoupled one dimensional systems
(Iny + AtB )V = v, 1<i<Nj. (21)

@ The ADI approach enables a direct application of the fast 1D solver
to two- and three-dimensional space-fractional diffusion equations.

@ The ADI approach does not need a direct decomposition of A™.
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A fast operator-splitting multistep ADI finite difference method
(W. & K. Wang, J. Comput. Phys., 2011)

The fast ADI method can be performed in O(N log? N ) of operations
per time step and requires O(N log N') of memory to store for two- and
three-dimensional space-fractional diffusion equations.

An efficient storage of the fast ADI method requires the storage of the
coefficient matrices A;n’x for j=1,...,Nyand B/"Y fori=1,...,Ny.
This requires NoO(N71) + N1O(N2) = O(N) of memory.

All the systems (20) can be solved in NoO(Nylog? Ni) = O(N log? N)
of operations, and those in (21) can be solved in N;O(Nylog? Ny) =
O(Nlog? N) of operations.

@ The same result holds true for 3D problems.

@ No multiple substeps needed if a conjugate-gradient type of iterative
solver is used to solve the one-dimensional systems.
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Two-dimensional numerical experiments

@ In the numerical experiments the data are given as follows
° d+(1’,y,t) = d_(.’E,yﬂf) = 6+(.’E, yat) = 6_(517,y,t) =D =0.005
o f=0,a=8=18 Q= (-1,1) x (=1,1), [0,7] = [0, 1].
o The true solution is the fundamental solution to (14) expressed
via the inverse Fourier transform

1 oo (T «
u(z,y,t) = %/0 DI cos(F) (050 o) de
: (22)
X / = 2D1 cosCEDIE+05)" o5 00) iy,
T Jo

e The initial condition u,(x,y) is chosen to be u(x,y,0).

@ In the numerical experiments the Meerschaert & Tadjeran scheme
and the fast ADI method were implemented using Matlab.
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h=At| |lupp —ullpr | llurp —ullz2 | [Jurp — ul[Les
214 3.0281 x 1072 | 7.0346 x 102 | 5.7095 x 10~ 1
25 90.8231 x 1073 | 2.1051 x 1072 | 1.6409 x 10~1
2-6 3.9081 x 1073 | 7.3313 x 1073 | 5.5939 x 1072
27 1.9647 x 1073 | 3.0910 x 1072 | 2.1663 x 102
lurrp —ullpr | [lurrp —ullz2 | lurFp — ullL=

24 28115 x 1072 | 6.1891 x 1072 | 4.8644 x 1071
2-5 8.4583 x 1072 | 1.6793 x 1072 | 1.2472 x 1071
26 3.1232 x 1073 | 5.2155 x 1072 | 3.6594 x 102
27 1.5340 x 1073 | 2.1439 x 1073 | 1.2013 x 102

Table : The (normalized) L', L?, and L errors of the fast ADI (FFD) method
and traditional finite difference (FD) method with Gaussian elimination
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h = At | CPU of finite difference (FD) with Gaussian elimination

24 49 s

27° 8.07x102s=13m 27 s

276 6.43 x 101 s =17 h 51 m

27 5.90 x 10% s = 1639 h 42 m = 2 month and 8 days
CPU of the fast ADI finite difference method (FFD)

2~% 74s

275 63.6s=1m4s

276 588 x102s=9m48s

277 522x103s=1h27m

Table : The consumed CPU of the fast ADI (FFD) method and the traditional
finite difference (FD) method with Gaussian elimination.
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Strength and weakness of ADI methods

@ Strength: easy to implement
o Numerical experiments show the utility of ADI methods.
o ADI methods reduce the solution of multidimensional
space-fractional diffusion equations to one-dimensional systems.
o Avoid the relatively complex multidimensional coefficient matrix A™.

@ Weakness: restrictive
e The ADI methods for space-fractional diffusion equations were
proved to be unconditionally stable and convergent
if the finite difference operators in the z- and y-directions commute.
e This condition is satisfied if d(x,y,t) are independent of y and
e+(z,y,t) are independent of x.
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A steady-state space-fractional diffusion equation in conservative form

—D(K(z)(8 Dz° + (1 - 6) .D;”)Du) = f(z), =€ (0,1),

u(0) = u(l) =0. 23)

2 — B with 0 < 8 < 1 represents the order of anomalous diffusion

K is the diffusivity coefficient, 0 < 6 < 1 indicates the relative weight
of forward versus backward transition probability of the particles

f is the source and sink term
oDz u(z) and xDl_Bu(:E) are the left- and right-fractional integrals

T ”

I'(-) is the Gamma function
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Hong Wang, University of South Carolina

Analysis of an FDE with constant diffusivity (Ervin & Roop, NMPDE 2005)

_B
o Galerkin formulation: given f € H—(1—§>(0, 1), seek u € Hé 2(0,1)
_B
B(u,v) = (f,v), VveHol 2(0,1). (25)
1-£ 1-8 .
Here B: H, *(0,1) x H; *(0,1) = R is defined to be

B(u,v) :=0K{yD3”Du, Dv) + (1 - §)K (, Dy’ Du, Dv)
1-5/2 1-8/2
=0K (oD:c u, oDy Dv) £2(0,1)
+(1 — G)K(ngi_B/Qu, OD;_ﬁ/zv)LZ(OJ)
_B
(+,-) is the duality pair between Hf(lfg)((), 1) and Hg 2(0,1).

e For @ =1/2, B(-,-) is symmetric. This problem reduces to fractional
Laplacian which is well studied in harmonic analysis.
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Analysis of an FDE with constant diffusivity (continued)

@ The coercivity of B(-,-) is derived as follows

B(u,u) = K(oDi_ﬁ/Quy xDl_ﬁ/Qu)H(o 1)
= —cos ((1 —B/2)m )K‘U’Hl 8/2(0,1)
= cos (57r/2)K]u\H1 B/2(0,1)"

8
2(0,1). Hence,

. . . 1-2 1-
B(-,-) is coercive and continuous on H, ?(0,1) x H,
the Galerkin weak formulation (25) has a unique solution. Moreover,

[l < /a)|Ifll, -

H~ 7(0 1) >(0,1)'
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Galerkin finite element methods and their error estimates

8
o Let S5(0,1) C H; 2(0,1) be the finite element space of piecewise

polynomials of degree m — 1. Find uy, € Sp,(0,1) such that

B(up,vp) = (f,vn),  Yop € Sp(0,1).

@

@ The optimal-order error estimate holds for u € H™(0,1) N Héf (0,1)

_8
lun = ull 2o,y + ' 2 llun —ull g < OB [[ullmo)-

2(0,1)

@ The analysis was extended to DG and spectral methods.

@ All of the analysis requires K to be positive constant.
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Extensions to variable-coefficient problems

@ Variable-coefficient models were derived in applications. Can the
previous analysis be extended to cover these problems?

@ In the context of variable diffusivity K
B(u,v) =6(KoD;”Du, Dv) + (1 — 0)(K,D;”Du, Dv)
# (K Du, . D7 Dv) + (1 — §)(K Du,oD;” Dv)

—B/2 —B/2
# (KoDz"'"Du, » Dy DU)LQ(O,U

@ Each corresponds to a fractional equation of a different form

—D(KD'"Pu) # —D'"#(KDu) # —D'"P/>(KD'~F/y).
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@ The last form seems to be mathematically preferred, but still cannot
guarantee its coercivity

—3/2 —5/2
(K()Dx B/ Du, D, / Du)LQ(O,l)
_ —B/2
? Kpin(0Dz ﬁ/QDuny1 o D“)L2(o,1)

= COoS (5W/2)Kmin‘u‘§[lfﬁ/2(0,l)'
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A counterexample

There exist a K(x) consisting of two positive constants and a function
1-8
w e Hy *(0,1) such that B(w,w) < 0.

_B
Let K(z) and w € H}(0,1) C Hé 2(0,1) be defined by

i B K, T € (0,1/2),
(@) = 1, xe (1/2,1).
| 2, x € (0,1/2],
w() = 201 —xz), =ze[l1/2,1).
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Direct calculation gives

228
_—, € (0,1/2),
DY Pup(z) = r(B+1) € 0.1/2)
; 2(2f - 2(zx — 1/2)P) v (1/2.1)
r@e+1) ’ o
Then we have
218

B(w,w) = W(Kl — (271 - 3))

Since 0 < logy3 —1 < 1, choose logy 3 — 1 < B < 1 so that 26T1 —3 > 0.
Then we select K > 0 sufficiently small such that K; — (2°+1 —3) < 0.
For such K and w, we have B(w,w) < 0.
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Characterization of the solution to fractional equations

o Consider a one-sided problem (problem (23) with 6 = 1)
— D(K(z) oD;°Du) = f(z), z€(0,1), u(0)=u(l)=0. (26)
@ mass balance of a fractional Darcy’s law, physically reasonable

Assume that K € C1[0,1] and f € C[0,1]. Then u is the unique
solution to (26) if and only if it can be expressed as

1
U = OD’B wf — 0D1 wy (0D1 U)b) ODgwby (27)
where wy and wy, are the solutions to the following problems

—D(K(z)Dwy) =f, x€(0,1); wr(0) =wys(l) =0,
—D(K(z)Dwy) =0, x€(0,1);  wy(0) =0, wy(l)=1.
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A Petrov-Galerkin weak formulation

@ For a constant diffusivity coefficient K, the Galerkin formulation is
coercive on the product space Hé_ﬁ/Q(O, 1) x Hé_ﬁ/Q(O, 1).
@ In the context of a variable diffusivity coefficient K
e The Galerkin formulation is not coercive on any product space H x H.
o A physically reasonable equation is expressed as the divergence of a
fractional diffusive flux of order 1 — j3.

o We propose a Petrov-Galerkin formulation imposed on
H{7P(0,1) x H}(0,1): Seek u e H) ?(0,1) such that

A(u,v) := /01 K(z) ¢Di PuDvdx = (f,v), YveH;(0,1) (29)

@ Even for constant K, the Petrov-Galerkin formulation is different
from the Galerkin formulation
e The latter is defined on Hé_ﬂ/z(O, 1) x Hé_B/Q(O, 1) for any given
fe H H-0=8/2)(0,1)
o The former is defined on Hy ?(0,1) x HZ(0,1) for any given
feH10,1).
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Weak coercivity and wellposedness of the Petrov-Galerkin formulation

Assume 0 < 8 < 1/2 and 0 < Kpin < K < Kjpae < 00. The bilinear
form A(w,v) is weakly coercive

A(w,v)
inf sup
weH; #(0,1) ve H(0,1) lwll -0,y vl 1 (0,1)

>v(8) >0,

(30)
sup  A(w,v) >0 Ywve H0,1))\ {0}
weHY?(0,1)

Thus, the Petrov-Galerkin formulation (29) has a unique weak solution
u € Hé_B(O, 1). Furthermore,

Kma:c
Y

1f1lz-1(0,1)- (31)

v

lullg1-s0,1) <
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Thank Youl
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