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Preface

Rudyard Kipling (1885)

Four out from crow-clump:
three left; nine out; two right;
three back; two left; fourteen
out; two left; seven out; one e
left; nine back; two right; six _ The Strange Ride
back; four right; seven back.
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RANDOM WALKS - DIFFUSION

Uhlenbeck and Ornstein (Phys. Rev., 1930)

In the theory of Brownian motion the first concern has always
been the calculation of the mean square displacement of the
particle, because this could immediately be observed.

(aX3(1)) = ((X(1) = (X(£))?) ~ ¢
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First Steps

Bachelier (PhD, Theorie de la Speculation,1900) first consideration of a
stochastic process in continuous time [;° x p(x,t) dx = k/t

Pearson (Nature, 1905): n steps, 2-dim off-lattice, probability to be
between r and r + dr from starting point
2

2 _r
Rayleigh (Nature, 1905): P = —e™ nrdr (ry=n
n

Einstein (Ann. d. Phys., 1905):
g_z; — D& (x2(t)) = 2Dt, D = ( RT ) _ (kBT>

Ox2° 6Nman ¥

Langevin (Comptes Rendues Acad. Sci.,1908)
..a demonstration that is infinitely more simple ..m% = F(t) — yd—f
(F(1)) = 0, (F(0)F (1)) = D(¢t), (x(t)F(t)) =0, (x*) ~2Dt, D ="l

\\\\\\\\\\
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Diffusion with Reactions and Forcing

Diffusion with Reactions

Fisher (Ann. Eug., 1937); Kolmogorov et al (Moscow Math. Bull., 1937)
on 0°n on 02n
E—D02+)\n(1fn) at

Diffusion with Forcing

Fokker (Ann. Phys., (1914), Planck (1917), Kolmogorov (1931)

, 2
% = % (D(x, t)p(x,t)) — 02 (b(x, t)p(x, t))

X

Smoluchowski (Ann. Phys.,1915)

op P?p 0 B
9t = P52 " 5 (F(x t)p(x, 1)), Flx,t) =

Ito stochastic equation dX; = (X, t) dt + odW,;
Fractional Subdiffusion
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ANOMALOUS DIFFUSION

Klafter (Physics World, 2005)

the clear picture that has emerged over the last few decades is
that although these phenomena are called anomalous, they are
abundant in everyday life: anomalous is normal!

(BX3(1)) = ((X(8) = (X(£)?) = ¢
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Anomalous Diffusion

(AX?) ~ t(Int)"

ultraslow diffusion

Sinai diffusion

1<r<4 deterministic diffusion
(AX?) ~ t* subdiffusion disordered solids
O<ax<l biological media
fractal media
porous media
(AX?) ~ { . i " transient subdiffusion  biological media
(AX?) ~ t standard diffusion homogeneous media

(AX?) ~tP 1< pB<2

superdiffusion

turbulent plasmas
Levy flights
transport in polymers

(AX?) ~ t?

ballistic diffusion

optical traps

(A?) ~ 13

Richardson diffusion

atmospheric turbulence |
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Subdiffusion

solute transport in porous media — Drazer and Zanette Phys. Rev. E (1999)
electrons in porous TiO, - Dittrich et al Phys Rev E (2006)

molecules in spiny nerve cells — Santamaria et al Neuron 2006

telomeres in mammalian cells — Bronstein et al Phys Rev Letts (2009)

lipid granules in yeast — Jeon et al Phys Rev Letts (2011)

lipid molecules in lipid bilayers — Akimoto et al Phys Rev Letts (2011)

water in heterogeneous colloidal systems — Palombo et al J Chem Phys (2011)
proteins in cells — Roosen-Runge et al PNAS (2011)

potassium channels in the brain — Weigel et al PNAS (2011)
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Subdiffusion in Nerve Cells

Spiny dendrites, Computational
Neurobiology and

Imaging
Centre, Mount Sinai School
of Medicine, New York

Bruce Henry (UNSW)

Fractional Subdiffusion

FRAP experiments on spiny

dendrites, (Santamaria, Wils,

De Schutter, Augustine, Neuron

2006, Eur. J. Neuorsci. 2011)
Distance (um)

D

Variance (}Lmz)
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Scaled Brownian Motion Diffusion Equation

Wang, Dong, Wu, Zhu, Ko (Physica A, 1994), Lutz (Phys. Rev. E, 2001)
o Time dependent diffusion coefficient D(t) = at®* 1Dy, 0<a <1

dp 1 0%
— = at“ "D
o~ 0o

@ Non-Markovian probability density function

x2

1
t) = — -
/)(X, ) VAarDyte &P < 4Dpt™

@ Anomalous subdiffision

) Rescaled Gaussian

[e.9]
<X2> = / sz(x, t) dx = 2Dyt = 2D0t°" H Hurst exponent

—« « d « -i:
® Note D(t) = oD; “ (F(a+1)Do) oD “y(t) = —oZ2¥(t)  |nqw
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Fractional Langevin Equation

@ Dissipative memory kernel

m% = F(t) - m/0 y(t — t)v(t) dt’
(F(t)) =0 (F(0)F(t)) = Dat™ coloured noise

@ Equilibrium fluctuation-dissipation theorem
D, _
F(t)F(0)) = mkg T~(t) = t) = te
(FOFO) = mks () = (1) = o

dv D,
N ) - 2
= ma=FO -7

oD v(t) 0<a<1

@ The probability density function for trajectories satisfies the fractional
Brownian motion diffusion equation. s

Bruce Henry (UNSW) Fractional Subdiffusion Fractional PDEs June 2013 12 / 45



Fractional Diffusion — fBm

@ Rescaled Gaussian

0= g o® ()
X = ——— eX —
P 47 Dyt™ P 4Dyt
@ Non-Markovian
P(T >t+s|T>s)>P(T>t)
o Ergodic
(C(t)e = (P(t)) T = 2Dot*

@ Ensemble Average
((t)e = ((x(t) = x(0))?)
@ Moving Time Average

XP(t)) T = Tl_ t/o ) (x(t +t') — x(t'))? dt’
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CONTINUOUS TIME RANDOM WALKS

Banjo Patterson (The Bulletin, 1892)

It was the man from lronbark
who struck the Sydney town,

he wandered over street and park,
he wandered up and down.

He loitered here, he loitered there,
till he was like to drop,

until at last in shear despair,

he sought a barbers shop.

AUSTRALIA
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Continuous Time Random Walks — CTRWs

Standard Random Walk
The step length is a fixed distance
Steps occur at discrete times separated by a fixed time interval

Continuous Time Random Walk
Montroll & Weiss, 1965; Scher & Lax, 1973

The step length is selected at random from a step length probability
density A(x)

Steps occur after a waiting time selected at random from a waiting time

probability density
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Standard Diffusion or Fractional Subdiffusion

Hilfer, Anton Phys Rev E, 1995; Compte (Phys. Rev. E.,1996)
Assume A(x) = A(—x) with finite variance 0 = [ x*A(x) dx

Gaussian A(x) = —=1— exp (—%) or n.n. A(x) = &(x £ Ax).

@ Markovian exponential waiting time density

¥(t) = 2ep (-7)

op 0?p D— o2
ot ox?’ 27

@ Non Markovian power law tail waiting time density
Pareto ¥(t) ~ ﬁ% te[r,oo], 0<ax<l
Mittag-Leffler ¥(t) = — % Ea(—15)  Eal(2) = X% 7ms
Scalas, Gorenflo, Mainardi (2004)

dp 1—ap %P o
L D — L =——— O<ax<l c
ot~ 0t Fegae FeT nar(1—a) “ UNSW
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Fractional Subdiffusion as Subordinated Diffusion

@ Subordinated probability density function
G(x, t) — Green's solution time fractional subdiffusion
G*(x, t) — Green's solution standard diffusion

G(x,t) = /0oo G*(x,7)T(r,t)dr

L(T(r,t)) = T(r,u) = u®"te ™" t - physical time, T — operational time
scales as number of steps

@ Subordinated stochastic process
(Magdziarz, Weron, Weron, Phys. Rev. E., 2007)

X(t)=Y(S)  dY(r)= (2D.)?dB(r)

St inverse-time a-stable subordinator S; = inf{7 : U(7) > t)
random time the process U(T) exceeds t
U(7) a-strictly increasing a-stable Levy process with p.d.f. g(t,7)

Llg(t,7)]=eT" g(t,7)= ﬁg (ﬁ) self-similar UNSW
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Fractional Diffusion — CTRW

@ Non-Gaussian * > [ = = T

@ Non-Markovian

P(T >t+s|T>s)>P(T>t)

@ Non-Ergodic

(e # ()T
@ Subdiffusive

o

2D,
(x*(1) = Td+a)
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SUBDIFFUSION WITH REACTIONS AND FORCING

Bruce Henry (UNSW) Fractional Subdiffusion Fractional PDEs June 2013
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Subdiffusion and Reaction Terms are not Simply Additive
Linear reaction kinetics
d t ’
L~ kn = n(x,t) = n(x,0)e” Jo ket
dt
Straightforward generalization A.
on o= [(9%n
ot = Pegea <W> ko

Infinite domain solution, (Henry, Langlands, Wearne, Phys. Rev.| E, 2006)

1 i(fkt)me X (1-%+j0)
VarDat < j! 1 [4Date (0,1) (5 +4,1)

n(rs)

n(x,t) =

0.0

The solution is not strictly positive for all x and t.

Bruce Henry (UNSW) Fractional Subdiffusion Fractional PDEs June 2013 20 / 45




Subdiffusion and Reaction Terms are not Subordinated

e —kn = n(x,t) = n(x,0)e” Jo

Straightforward generalization B.

on ol 9%n

— =———|D,—= — kn

ot Otl-« " Ox?2
This models the case when a fixed fraction of walkers is removed at the
start of each waiting time (Henry, Langlands, Wearne, Phys. Rev. E, 2006)

n(x, £) = (1 — K)d(£)n(x, 0) +Z/ W) (1 — k)t — E)A(x — x) dt’
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Subdiffusion and Reaction Terms are Entwined

3—: = —kn = n(x,t) = n(x,0)e” Jo keat!

Correct equations (Henry, Langlands, Wearne, Phys. Rev. E, 2006)

n(x, t) = e Md(t)n(x,0) + ) /t n(x', t)e K=yt — )\ (x — ) dt’
x! 0

on e OV (40P
ot =0 Taa (¢ ae) K

Sokolov, Schmidt, Sagués Phys. Rev. E (2006)

on ‘ / —k(t71”)82'7 /
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Subdiffusion and Nonlinear Reactions

Fedotov (Phys. Rev. E., 2010)
Nonlinear reaction kinetics

5 r(n)n = n(x,t) = n(x,O)efot r(n(x.t)) dt!

Master equation

an 't "o // "
- / K(t_ t/) (/ ( ) ft’r n(x’ ,t )dt )\(X—X/) dX/
ot ;

— 0o

Abad, Yuste and Lindenberg (Phys. Rev. E., 2010)

on 1—y & n S
57 = 00 0K 0D o <¢(X, t)) T ’

o(x, t) = exp [; r(n(x, t")) dt”
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Subdiffusion and External Forces run on Different Clocks

Gorenflo and Mainardi, Eur. Phys. J. Special Topics (2011)
Space dependent force (Barkai, Metzler, Klafter, Phys. Rev. Letts, 2000)

dp(x, t) B ol 92 19
T - ODt /‘vu,w njaF(X) p(x7 t)
Magdziarz, Weron, Weron (Phys. Rev. E., 2007)

X(t) = Y(S) dY(7) = 5F(Y(r))dr +(2x) dB(7)

Simply time-subordinated to the solution of the standard Fokker-Planck equation.
Time dependent force (Sokolov & Klafter, Phys. Rev. E, 2006)

dp(x, t) 0? 1 0

LA S Sp— . o l—«
at_ |:K’(¥ 0X2 77(), F(t) (9X ODt /)(Xv t)

Magdziarz, Weron, Klafter (Phys. Rev. Letts., 2008)
X(t)=Y(S) dY(r)=LF(U(r))dr + (2x)>dB(r)
Not simply time-subordinated to the solution of the standard Fokker-Planck equatiddNSW

\\\\\\\\\\
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Space and Time Dependent Forcing

Weron, Magdziarz, Weron, (Phys. Rev. Letts, 2008)

xo=vis) (20 )= ( FYCREO Yur (2r) ! dB(r) )
inf{r: U() > t)

Henry, Langlands, Straka (Phys. Rev. Letts. 2010)

Ip(x, t) 0? 10 1—a
R aLI Lot

Ra = Au 2T<» Na = (23/"‘7(\)71
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GENERALIZED MASTER EQUATION DERIVATION

Angstmann, Donnelly, Henry Mathematical Modelling of Natural Phenomenon (2013)

AUSTRALIA

)
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Reactions: Birth and Death Processes

w(x, t)dt + o(dt) probability of a particle dying in (t,t + 0t)

n(x, t)dt + o(dt) probability of a particle being created in (t,t + 0t)
O(x,t,s) = e~ Js wixt)dt’ probability of particle surviving to time t

O(x,t,s) = 0(x,t',s)f(x, t,t") useful identity

Example
A+B = A+2B, B—kC

dc
d—f = kchCB — k2CB — k,1CACE;

wp(x, t)dt = (ko + k_1cacg)ot

7]B(X7 t)(Sf = kicacgdt
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Forcing: Biased Jumps
W(x,x' t,t") = Nx,x', t)u(x', t — t) transition probability
for a particle at x’ at time t/ to jump to x at time t

A(x, x, t) jump density allowing for space and time dependent forcing

Z Ax, X', t) =1 for fixed x’ and t

(X', t — t') waiting time density allowing for spatially dependent trapping

/ (X' t—t)dt=1 for fixed x’ and t'.
Jt!
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Single Particle Master Equation

Probability per unit time for a walker to arrive at point x at time t given
that it was at point xp at time 0

t
q(x, t]x0,0) = G pd(t — 0F) + > / W(x,x', t,t)0(x, t', t)q(x', t'|xp, 0)dt
x! /0

Probability per unit time for a walker to leave point x at time t given that
it was at point xg at time 0

t
i(x, t]x0,0) = / b, t — )0(X, ', )q(x, ¥ ]x0, 0)dlt
Jo
Probability of a particle to be at point x at time t
t
p(x, t]x0,0) = / O(x, t — £)0(x, £, £')q(x, ¢'|x0, 0)dt
Jo

Jump survival probability

t—t’
d(x,t—t)=1- / P(x, t")dt"
J0
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Single Particle Master Equation

Useful separation
q(x, t|x0,0) = dx x,0(t — 07) + g™ (x, t|x0, 0)

Differentiation of p(x, t)

OP(X, t|7X0>0)

5 = g (x, tlx0,0) — dx x,0(x, t,0)tb(x, t)

t

— | gt (x,t'|x0,0)0(x, t, t)(x,t — t')dt'
J0

_W(Xa t)/)(X, t‘X()? 0)

Formally equivalent to a flux balance

Op(x, t‘,Xo, 0) _
o A S,
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Single Particle Master Equation

Useful identity

/)(X,t‘Xo,O) o /hlL q(X7 t/‘X()vO)
H(X,t,O) B 0 Q(X7t/70)

d(x,t — t')dt’

Simplification

M Z Ax, X', t) / K(x',t —t")p(X, t'|x0,0)0(xX, t, t")dt’
t
— / K(x,t —t")p(x, t'|x0,0)0(x, t, t')dt’
0
—W(X, t)p(x, t’X07 O)
Kernel

R(X, s) = (x;s)

~

d(x,s)
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Ensemble Master Equation

Ensemble of particles, created and destroyed by a reactions, subject to an
external force field, newly created particles draw a new waiting time

Density of particles at x at time t

t
ulx.t) = 3 [ ol o o)ttt
xg °

Differentiation, using the single particle master equation,

Ouxt

Z)\ x, X' t / K(x' t —tYo(xX, t, tu(x, t')dt’

/OtK(x t —t0(x, t, t")u(x, t")dt' — w(x, t)u(x, t)+’r}(x

Angstmann, Donnelly, Henry Mathematical Modelling of Natural Phenomenon (20183}\Jq

\\\\\\\\\\
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Special Cases

I) Reduction to Checkin, Gorenflo, Sokolov (2005)

(x, t — t’) spatially inhomogeneous

A(x, x' t) 2(6(x,x — Ax) 4 0(x, x + Ax)) no forcing
0(x, t,t") = 0,w(x,t) = 0,n(x, t) = 0 no reactions

/O.tK(X t—tHp(x,t')d /Mxt—t p(x, t)dt', M(x,s) = =

I1) Reduction to Henry, Langlands, Wearne (2006)
P(x,t — t') = (t — t') spatially homogeneous

A(x, X', t) = 1(0(x, x — Ax) + 6(x, x + Ax)) no forcing
0(x, t,t') = e Kt=) (x, t) = k, n(x, t) = 0 no births

I11) Reduction to Fedotov (2010)
(X', t —t') = (t — t') spatially homogeneous
Ax, X', t) = 2(0(x, x — Ax) + 6(x, x + Ax)) no forcing

O(x, t, ') = e Jor (et D 8y = 1 (u(x, 1)), nix, t) =
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Generalized Master Equation - Nearest neighbour jumps

One dimensional lattice, biased nearest neighbour jumps
A(xi, xi—1,t) = pr(x;_1, t) probability to jump to the right from x;_1
A(xj, Xi+1,t) = pe(xi41, t) probability to jump to the left from x;11

0 it t
% — / K(xi—1,t — t")pr(xi—1, t)0(xi_1, t, ' u(x;_1, t')dt’
JO

t
+ / K(X,'+1, t — t/)pg(X/+1, t)e(X/+1, t, t/)U(X/+1, t/)dt/
0

t
— / K(xi, t — t)0(x;, t, t")u(x;, t')dt’
J0

— w(x, t)u(xi, t) + n(xi, t)

\\\\\\\\\\
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Biased Jumps

F(x,t) = —W near thermodynamic equilibrium, Boltzmann weights
e BV(xit1:t)
pr(xi,t) = g R B e L
e*ﬁV(X,',l,t)
pe(xi,t) =

e BV(xiy1,t) 1 e=BV(xi-1,t)

Continuum limit, x; = x, xj+1 = x £ Ax, Taylor series expansions in x,
retaining leading order terms in Ax

du(x,t) AR P [t N N
ulet) TW/O 0(x. t. )ul(x, £)K(x, t — ') dt

X

— Bszg (F(x, ﬂ/; O(x,t,t)u(x, tK(x,t — t') dt’
— w(x, t)u(x, t) +n(x,t)

\\\\\\\\\\
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Special Case - Fractional Dispersion

Reduction to Sokolov, Klafter (2006)
Field-Induced Dispersion in Subdiffusion

(x,t —t') = (t — t') spatially homogeneous
F(x,t) = F(t) time dependent forcing

O(x,t,t") =0,w(x,t) = 0,n(x, t) = 0 no reactions

" d
K(x,t—t ) dt = —
| Kt = o eyar = 2
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Fokker-Planck Equation with Reactions

U(x, t) = y(x)e 7™t exponential waiting time density K(x,t) = ~(x)d(t)

du(x,t) o2 0 1
pr = 32 (D(x)u(x, t)) — Ix <mF(X> t)u(x, t))

—w(x, t)u(x,t) +n(x, t)

Ax? 2(1(x))

AX»<|Ti(T)>%O m’ C(x) = lim

D(x) =
(x) Ax,(r(x))—=0 [AX2

D(x) and ¢(x) finite and differentiable w.r.t. x
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Fractional Fokker-Planck Equation with Reactions

Angstmann, Donnelly, Henry Mathematical Modelling of Natural Phenomenon (2013)
Spatially dependent Pareto waiting time density

a(x)TO‘(X)
Y(x,t) = { ttetd £ € Ir, o], for 0 < a(x) < 1

0 te[0,7)
t 1 _ 9(X t 0)
K gt ’ > —Dl a(x) n_ Y\ LY

/O (x,t —t")y(x, t')dt T = o) > y(x,t), O(x,t,t) o(x,,0)

Ju(x,t) 5 1—a(x) | u(x,t)
ot~ o2 \ Peoflx: 00D 9(x, ,0)

-~ ! X X 1-a(y [_u(x t) ol Dl i
Ox <Ca<x>F( k0P |:9(X,t,0):|> Cotulxt) + 1)

Ax? 701 — a(x))
Doy = i —_— ax) = i —_—
() AXZSTHO 272 (1 — a(x)) Gat) AX{”’E*}O BAx? UNSW
e e e
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Special Cases - Fractional Fokker-Planck Equation

No reactions 6(x, t,t") = 0,w(x, t) = 0,n(x,t) =0

I) Reduction to Barkai, Klafter, Metzler (2000)
From continuous time random walks to the fractional Fokker-Planck equation

F(x,t) = F(x), a(x)=«

II) Reduction to Sokolov, Klafter (2006)
Field-Induced Dispersion in Subdiffusion
F(x,t) = F(t), a(x)=a«

I1I) Reduction to Henry, Langlands, Straka (2010)
Fractional Fokker-Planck Equations for Subdiffusion with Space- and Time-Dependent
Forces

F(x,t) = F(x,t), a(x)=a«
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Fractional subdiffusion with chemotaxis and reactions

Collaboration — CNIC Mount Sinai School of Medicine New York

@ Subdiffusion from macromolecular crowding in amyloid beta plaques associated
with Alzheimer's disease, (Mueggler, Meyer-Luehmann, Rausch, Staufenbiel,
Jucker, Rudin, Eur. J. Neur. 2004)

@ Fractional chemotaxis with linear reactions, (Langlands, Henry, Phys. Rev. E.,
2010)

on kt l—ca —kt &n 0 (0¢ it i-ay —kt
—_— = D T =5 — Xafjq_ a. D k
at o <e o oxz Xogx \ox© o7t (e n) ) + kn

@ In progress, nonlinear reaction diffusion equations with chemotaxis and anomalgugyy/
diffusion
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Fractional electro-diffusion

Collaboration — CNIC Mount Sinai School of Medicine New York

Distance (um)

o

Variance (;1m2)

0 250 500 750 1000
Time (ms)

@ Subdiffusion from trapping by spines on dendrites, (Santamaria, Wils, De Schutter,
Augustine, Neuron 2006, Eur. J. Neuorsci 2011)

@ Fractional cable equation

Henry, Langlands, Wearne (Phys. Rev. Letts, 2008), Langlands, Henry, Wearne
(SIAM J. Appl. Math, 2011)

ov _ OV L .
(‘j_T = OD%— '07 —H20D; ‘(V* Ierm)

@ In progress, fractional compartmental models for whole neurons

»
UNSW
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CTRW with Reactions on Networks

Angstmann, Donnelly, Henry Phys. Rev. E (2012)

t

dU(C\;\;j,t) _ /

0

J
Z K(w;, t — t )X (wi, w))0(w;, t, t ) u(w;, t') —

i=1

K(WJ* t— t/)e(wfv t, T.‘/)U(VVJ', t/) dt/

=B(w;, t)u(w;, t) + n(w;, t).

Reaction survival function
O(wi, t,t') = e~ Jio ity

Standard diffusion
h(wj, t) = aw;)e” >
= K(w;, t) = a(w)i(t)

A..
)‘(Wiv VVJ) = k_’,j
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CTRW with Forcing on Networks

J t
d it ' / ’ ’
WD~ S Al w) [ K= Eluty. o)
t = J
t.

- / K(t — ¢ |v)u(vi, ') dt’

t
Self-chemotactic like forcing

Bias in the jump density dependent on the concentration of particles on neighbouring
vertices

Aj,ieﬁ”(vf’t)
J
Z Aj.keBU(Vk:t)
k=1

A(vilt, vi) =

Steady state pairing patterns, concentration localized in distinct pairs of adjacent SW
vertices
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Thank You
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Appendix: Stochastic Subdiffusion Process

Conjecture (Weron, Magdziarz, Weron, Phys. Rev.Letts, 2008), Proof (HLS, Phys. Rev.
Letts. 2010)

xw=vis) (G0 )= (FOOEOD a2 B0 )

St =inf{r: U(7) > t)
q:(y, z) p.d.f. of (Y, Z:) — generalized stochastic process, Levy noise
d 0? 0 (F(y, a
S a) =ngzaly.n) - o (Fag.2)) - obraty.2)
pt p.d.f. of X(t) — compensation formula
Jype) dx = [ dt’ [, dy [y dz av(y, 2) s
pe(x) = [ dt’ ol qu(x, t)

o) ? 1. o [(F(x,t) 14
apt(x) =i oDy pe(x) — Ix (r—] 0D: ™% pe(x)
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