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Abstract

In this paper we introduce an hp certified reduced basis method for
parabolic partial differential equations. We invoke a POD (in time) /
Greedy (in parameter) sampling procedure first in the initial partition of
the parameter domain (h-refinement) and subsequently in the construc-
tion of reduced basis approximation spaces restricted to each parameter
subdomain (p-refinement). We show that proper balance between addi-
tional POD modes and additional parameter values in the initial subdi-
vision process guarantees convergence of the approach. We present nu-
merical results for two model problems: linear convection-diffusion, and
quadratically nonlinear Boussinesq natural convection. The new proce-
dure is significantly faster (respectively, more costly) in the reduced basis
Online (respectively, Offline) stage.
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1 Introduction

The certified reduced basis (RB) method is a model-order reduction framework
for rapid evaluation of functional outputs, such as surface temperatures or fluxes,
for partial differential equations (PDEs) which depend on an input parameter
vector, for example related to geometric factors or material properties. There
are four key ingredients to the certified RB framework:

• Galerkin projection: optimal linear combination of N pre-computed N -
degree-of-freedom “truth” finite element (FE) field snapshots [1, 2];
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• POD/Greedy sampling: POD (in time) / Greedy (in parameter) [3] opti-
mal selection and combination of FE field snapshots;

• a posteriori error estimation: rigorous upper bounds for the error in the
RB (output) approximation with respect to the “truth” FE discretization
[4, 5];

• Offline–Online computational decomposition: O(N •)-complexity prepro-
cessing followed by O(N•)-complexity certified input-output prediction
[6, 5].

We shall describe each ingredient further in subsequent sections.
We shall assume that the field variable depends smoothly on the parameters.

In that case we can expect, and we can rigorously confirm a posteriori, that N �
N ; we can then furthermore anticipate rapid Online evaluation of the RB output
approximation and associated RB output error bound. The certified RB method
is thus computationally attractive in two important engineering contexts: “real
time,” such as parameter estimation and optimal control; “many query,” such
as multiscale or stochastic simulation. In both instances, the Offline effort is
either unimportant or can be amortized over many input-output evaluations. In
both instances, rigorous error control without direct appeal to the “truth” is
crucial.

For many problems, the field variable may be quite different in different
regions of the parameter domain, and hence a snapshot from one region may
be of little value to the RB approximation in another region. To exploit this
opportunity we introduce in [7] an hp reduced basis method for linear elliptic
equations. In the Offline stage we first adaptively subdivide the original param-
eter domain into smaller regions (h-refinement); we then construct individual
RB approximation spaces spanned by snapshots restricted to parameter values
within each of these parameter subdomains (p-refinement). In the Online stage,
the RB approximation associated with any new parameter value is then con-
structed as a (Galerkin) linear combination of snapshots from the parameter
subdomain that contains the new parameter value. The dimension of the local
approximation space, and thus the Online cost, shall be very low: every basis
function contributes significantly to the RB approximation. We note that an al-
ternative “multiple bases generation” procedure is introduced in [8]; a different
“interpolation” approach to parametric reduced order modelling with parameter
subdomains is described in [9].

In this paper, we extend the work in [7] to linear and non-linear parabolic
equations through a POD (in time) / Greedy (in parameter) procedure. The
POD/Greedy sampling approach [3] is invoked both in the initial partition of the
parameter domain (h-refinement) and subsequently in the construction of RB
approximation spaces restricted to each parameter subdomain (p-refinement).
Much of the elliptic machinery from [7] extends to the parabolic case since we
only subdivide the parameter (and not the temporal) domain. The critical new
issue for the hp-POD/Greedy algorithm for parabolic problems is proper balance
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between additional POD modes and additional parameter values in the initial
subdivision process.

The hp-POD/Greedy procedure was first introduced in the conference pro-
ceedings paper [10]. We extend [10] here in several important ways. First, we
introduce an improvement to the algorithm: an additional Offline splitting step
which permits direct control of the Online computational cost. Second, we in-
troduce (for a simple but illustrative case) a new a priori convergence theory for
the initial subdivision process; we show in particular that the procedure is con-
vergent provided sufficiently many POD modes are included in the RB spaces.
Good convergence of the subdivision process is critical both to Offline and Online
performance. Third, and finally, we extend our considerations to quadratically
nonlinear parabolic problems. This class of problems is particularly “ripe” for
the hp approach due to the O(N4) computational cost associated with RB error
bound evaluation [11, 12]: even a small reduction in N—the number of RB basis
functions—will result in significant Online computational savings.

We begin in Section 2 with the problem statement(s). In Section 3 we intro-
duce the hp-RB approximation, the associated RB error bounds, and the nec-
essary computational procedures. In Section 4 we present the hp-POD/Greedy
algorithm and the new a priori convergence theory. Finally, in Section 5, we
present numerical results for two model problems: a linear time-invariant (LTI)
convection–diffusion problem, and a quadratically nonlinear Boussinesq natural
convection problem; we focus our discussion on computational cost and Online
economization compared to the standard (p-type) RB method.

2 Problem Statement

We directly consider a discrete-time parametrized parabolic PDE defined over
a spatial domain Ω ⊂ R2 for discrete time levels tk = k∆t, 0 ≤ k ≤ K; here
∆t = tf/K, and tf is the final time. We further introduce a P -dimensional
parameter domain D ⊂ RP and denote by µ ∈ D a particular parameter value.
For a given µ ∈ D we shall denote the exact solution to our discrete-time
parabolic PDE as uk(µ) ≡ u(tk, µ), 0 ≤ k ≤ K.

We consider Euler Backward (θ = 1) and Crank Nicolson (θ = 0.5) temporal
discretization schemes (more generally we may consider 0.5 ≤ θ ≤ 1); we define
uk+θ(µ) ≡ θuk+1(µ)+(1−θ)uk(µ). The exact formulation reads: for any µ ∈ D,
find uk(µ) ∈ X, 1 ≤ k ≤ K, such that

1

∆t
m(uk+1(µ)− uk(µ), v;µ) + a(uk+θ(µ), v;µ)

+ b(uk+θ(µ), uk+θ(µ), v;µ) = f(v;µ), ∀v ∈ X, (1)

subject to initial condition u0(µ). In the sequel we shall always assume zero
initial conditions. We then evaluate our output of interest as sk(µ) = `(uk(µ);µ)
for 0 ≤ k ≤ K. Here, X denotes a Sobolev space over Ω ⊂ R2; typically
(H1

0 (Ω))d ⊆ X ⊆ (H1(Ω))d, where H1(Ω) = {v : |∇v| ∈ L2(Ω)}, H1
0 (Ω) =
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{v ∈ H1(Ω) : v|∂Ω = 0} where ∂Ω is the boundary of Ω, L2(Ω) is the space of
square integrable functions over Ω, and d is the dimension of the field. (In our
exposition d = 1; later, for the Boussinesq problem, d = 3.)

We suppose that X is equipped with an inner product (·, ·)X and induced

norm ‖ · ‖X = (·, ·)1/2
X ; we further denote by (·, ·) the standard L2(Ω) inner

product and by ‖ · ‖L2 = (·, ·)1/2 the standard L2(Ω) norm. For any µ ∈ D,
m(·, ·;µ) is a coercive and continuous bilinear form over L2(Ω), a(·, ·;µ) is a
coercive and continuous bilinear form over X, b(·, ·, ·;µ) is a continous trilinear
form over X, f(·;µ) is an X-bounded linear functional, and `(·;µ) is an L2(Ω)-
bounded linear “output” functional. We introduce coercivity constants

α(µ) ≡ inf
v∈X

a(v, v;µ)

‖v‖2X
, σ(µ) ≡ inf

v∈X

m(v, v;µ)

‖v‖2L2

; (2)

under our assumptions, α(µ) > 0 and σ(µ) > 0 for any µ ∈ D. Note for b = 0
our problem is linear and coercive.

In order to develop efficient Offline-Online computational procedures for the
RB field approximation, RB output approximation, and RB error bound, we
shall suppose that all our forms admit “affine” expansions in functions of µ.
Specifically, for any µ ∈ D

a(·, ·;µ) =

Qa∑
q=1

aq(·, ·)Θq
a(µ), (3)

where Qa < Q and Q is finite and preferably modest. We suppose that m, b,
and f admit similar expansions in at most Q terms. Many problems (includ-
ing the examples of this paper) admit an affine expansion; for other problems,
approximate affine representations can be developed [13, 14].

We now introduce the “truth” spatial discretization of the PDE. We sup-
pose a regular triangulation T N (Ω) of Ω and introduce a corresponding high-
resolution finite element (FE) space XN ⊂ X of dimension N . The truth
discretization of (1) reads: for any µ ∈ D, find uN k(µ) ∈ XN , 1 ≤ k ≤ K, such
that

1

∆t
m(uN k+1(µ)− uN k(µ), v;µ) + a(uN k+θ(µ), v;µ)

+ b(uN k+θ(µ), uN k+θ(µ), v;µ) = f(v;µ), ∀v ∈ XN , (4)

subject to initial condition uN 0 = 0; then evaluate the truth output approxima-
tion as sN k(µ) = `(uN k(µ);µ) for 0 ≤ k ≤ K. It is this truth FE approximation
that we wish to accelerate by RB treatment. We shall assume that XN is rich
enough that the exact and truth solutions are indistinguishable at the desired
level of numerical accuracy. As we shall observe below, the RB Online computa-
tional cost is independent of N , and the RB approximation is stable as N →∞.
We can thus choose N conservatively.
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3 hp Reduced Basis Approximation

For a parameter domain D ⊂ RP , the hp-RB method serves to construct a
hierarchical partition of D into M distinct parameter subdomains VBm ⊂ D,
1 ≤ m ≤ M . Each of these subdomains VBm has associated nested RB ap-
proximation spaces X1,Bm ⊂ · · · ⊂ XNmax,Bm ,Bm , where dim(XN,Bm) = N ,
1 ≤ N ≤ Nmax,Bm . We define Nmax ≡ max1≤m≤M Nmax,Bm . The procedure for
the construction of the parameter domain partition and associated RB spaces,
as well as the form of the “identifiers” Bm, shall be made explicit in Section
4. In this Section, we discuss the RB approximation, the RB a posteriori error
estimators, and the associated computational procedures given the parameter
domain partition and associated RB spaces.

3.1 Reduced Basis Approximation

For any new µ ∈ D we first determine m∗ ∈ [1,M ] such that µ ∈ VBm∗ (⊂ D).
Given any N , we define N̂ ≡ min{N,Nmax,Bm∗ }. The RB approximation of (4)

reads: for any µ ∈ D, find ukN (µ) ∈ XN ≡ XN̂,Bm∗ , 1 ≤ k ≤ K, such that

1

∆t
m(uk+1

N (µ)− ukN (µ), v;µ) + a(uk+θ
N (µ), v;µ)

+ b(uk+θ
N (µ), uk+θ

N (µ), v;µ) = f(v;µ), ∀v ∈ XN , (5)

subject to initial condition u0
N = 0; then evaluate the RB output approximation

as skN (µ) = `(ukN (µ);µ) for 0 ≤ k ≤ K.

3.2 A posteriori error estimation

A rigorous a posteriori upper bound for the RB error is crucial for the Offline
hp-POD/Greedy sampling procedure as well as for the Online certification of
the RB approximation and RB output. The key computational ingredients of
the RB error bound are the RB residual dual norm and lower bounds for the
stability constants.

Given an RB approximation, ukN (µ), 0 ≤ k ≤ K, for µ ∈ D, we write the
RB residual, rkN (v;µ), 1 ≤ k ≤ K, as

rk+1
N (v;µ) = f(v;µ)− 1

∆t
m(uk+1

N (µ)− ukN (µ), v;µ)

− a(uk+θ
N (µ), v;µ)− b(uk+θ

N (µ), uk+θ
N (µ), v;µ), ∀v ∈ XN . (6)

The Riesz representation of the residual êkN (µ) ∈ XN , 1 ≤ k ≤ K, satisfies

(êkN (µ), v)X = rkN (v;µ), ∀v ∈ XN . (7)

We denote by εkN (µ) = ‖êkN (µ)‖X = supv∈XN
rkN (v;µ)
‖v‖X the residual dual norm.
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We next introduce positive lower bounds for the coercivity constants of m
and a, σLB and αLB, respectively, such that for all µ ∈ D

0 < σLB(µ) ≤ σ(µ), 0 < αLB(µ) ≤ α(µ). (8)

We also introduce a lower bound for the (possibly negative) stability constant

ρN (tk+1;µ) ≡ inf
v∈XN

2b
(
uk+θ
N (µ), v, v;µ

)
+ a(v, v;µ)

‖v‖2L2

, 0 ≤ k ≤ K − 1, (9)

which we shall denote ρLB
N (tk;µ): ρLB

N (tk;µ) ≤ ρN (tk;µ) for 1 ≤ k ≤ K and all
µ ∈ D. We further define τLB

N (tk;µ) = min(ρLB
N (tk;µ), 0).

We can then develop the L2(Ω) error bound

∆k
N (µ) =

√√√√√∆t
∑k
k′=1

(
εN (tk′ ;µ)2

1−(1−θ)∆t τLB
N (tk′ ;µ)

∏k′−1
j=1

1+θ∆t τLB
N (tj ;µ)

1−(1−θ)∆t τLB
N (tj ;µ)

)
αLB(µ)σLB(µ)

∏k
k′=1

1+θ∆t τLB
N (tk′ ;µ)

1−(1−θ)∆t τLB
N (tk′ ;µ)

(10)

for which it can be demonstrated [4, 12, 11] that ‖uN k(µ)−ukN (µ)‖L2 ≤ ∆k
N (µ),

1 ≤ k ≤ K, ∀µ ∈ D.1 We can furthermore develop an RB output error bound

∆k
N,s(µ) ≡

(
sup
v∈XN

`(v;µ)

‖v‖L2

)
∆k
N (µ), (11)

for which it can be demonstrated that |sN k(µ)−skN (µ)| ≤ ∆k
N,s(µ), 1 ≤ k ≤ K,

∀µ ∈ D.

3.3 Computational Procedures

Construction-Evaluation. Thanks to the “affine” assumption (3) we can de-
velop Construction-Evaluation procedures for the RB field, RB output, and RB
error bound. We first consider the RB field and RB output. In the Construc-
tion stage, given the RB basis functions, we form and store all the necessary
parameter-independent entities at cost O(N •). In the Evaluation stage, we
first determine the subdomain to which the given new parameter µ belongs:
an O(log2M) binary search suffices thanks to the hierarchical subdomain con-
struction which we will make explicit in the next section [7]. We next assemble
the RB system (5) at cost O(QN2) (N ≤ Nmax) in the LTI case [6] and at cost
O(nNewtonQN

3K) in the quadratically nonlinear case [11, 12]; we then solve
this system at cost O(N3 +KN2) in the LTI case and at cost O(nNewtonKN

3)
in the quadratically nonlinear case. (Here nNewton is the number of Newton
iterations required to solve the nonlinear equations at each timestep.) Given
the RB field, the RB output can be evaluated at cost O(KN).

1In the linear case b = 0, and it thus follows from (9) and the definition of τLB
N (we recall

that a(·, ·;µ) is coercive) that (10) simplifies to ∆k
N (µ) =

(
∆t

αLBσLB(µ)

∑k
k′=1 εN (tk

′
;µ)2

)1/2
.
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We next consider the RB error bound (10). We invoke the Riesz representa-
tion of the residual and linear superposition in order to develop Construction-
Evaluation procedures for the residual dual norm.2 In the Construction stage,
we again compute and store all the necessary parameter-independent entities at
cost O(N •). In the Evaluation stage, we can evaluate the residual dual norm at
cost O(KN2 +Q2N2) for LTI problems [6] and at cost O(KQ2N4) for quadrat-
ically nonlinear problems [11, 12]. (In the sequel we shall assume Q = O(1),
as is the case in our numerical examples.) We note that the O(N4) cost for
quadratically nonlinear problems compromises rapid evaluation for larger N
and in practice limits Nmax—motivation for an hp approach.

Offline-Online Decomposition: The Construction-Evaluation procedures
enable efficient Offline-Online decomposition for the computation of the RB
field approximation, RB output approximation, and RB output error bound.
The Offline stage, which is performed only once as preprocessing, can be very
expensive—N -dependent complexity; the Online stage, which is typically per-
formed many times, is comparably inexpensive—N -independent complexity.
We note that our RB formulation (5) inherits the temporal discretization of
the truth (4); we may thus not choose ∆t arbitrarily small without compromise
to RB Online cost.

In the hp-RB Offline stage we perform the hp-POD/Greedy sampling pro-
cedure which we discuss in the next section and which is the focus of this paper:
we invoke Construction-Evaluation procedures to identify good RB spaces and
to compute and store the Construction quantities required in the Online stage.
The link between the Offline and Online stages is the permanent storage of the
Online Dataset; the storage requirement for the hp-RB method is O(MN2

max)
in the linear case and O(MN4

max) in the quadratically nonlinear case. We recall
that M is the number of subdomains identified by the hp-POD/Greedy. In the
hp-RB Online stage we perform Evaluation based on the Online Dataset: we
calculate the RB field approximation, the RB output approximation, and the
RB error bound at the given new parameter in O(N•) complexity.

4 hp-POD/Greedy Sampling

In this section, we discuss the hp-POD/Greedy procedure for the construction
of the parameter subdomain partition and the associated RB approximation
spaces. We employ a hierarchical parameter domain splitting procedure and
hence we may organize the subdomains in a binary tree. Let L denote the
number of levels in the tree. For 1 ≤ l ≤ L, we introduce Boolean vectors

Bl = (1, i1, i2, . . . , il) ∈ {1} × {0, 1}l. (12)

For any Bl, 1 ≤ l ≤ L− 1 we define the concatenation (Bl, i) ≡ (1, i1, . . . , il, i),
i ∈ {0, 1}. The M subdomains of D are associated to the M leaf nodes of the

2We refer to [15, 12] for details on the Construction-Evaluation procedure for the compu-
tation of lower bounds for the stability constants—a Successive Constraint Method (SCM).
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binary tree; we denote by Bm, 1 ≤ m ≤M , the Boolean vectors that correspond
to the leaf nodes; we can thus label the parameter subdomains as VBm ⊂ D,
1 ≤ m ≤M . Similarly, we denote by X1,Bm ⊂ · · · ⊂ XNmax,Bm ,Bm (⊂ XN ) the
set of nested RB approximation spaces associated to VBm , 1 ≤ m ≤M .

4.1 Procedure

The hp-POD/Greedy algorithm introduced here applies to both the linear and
non-linear case. However, we adopt the notation of the linear (b = 0) and scalar
(d = 1) problem for simplicity.

Algorithm 1 [{χi ∈ X, 1 ≤ i ≤ ∆N}] = POD({wk ∈ XN , 1 ≤ k ≤ K},∆N)

1: Ci j ← (wi, wj)X/K, 1 ≤ i, j ≤ K;
2: Solve Cψi = λiψi, (ψi)TCψi = 1

K , for (ψi ∈ RK , λi ∈ R) associated with
the ∆N largest eigenvalues of C;

3: Compute χi =
∑K
k=1 ψ

i
kw

k for 1 ≤ i ≤ ∆N .

We introduce as Algorithm 1 the POD algorithm (the Method of Snapshots
[16]). For specified ∆N and {wk ∈ XN , 1 ≤ k ≤ K}, Algorithm 1 returns
∆N ≤ K X-orthonormal functions3 {χi ∈ X, 1 ≤ i ≤ ∆N} such that P∆N =
span{χi, 1 ≤ i ≤ ∆N} satisfies the optimality property

P∆N = arg inf
Y⊂span{wk,1≤k≤K}

dimY≤∆N

(
1

K

K∑
k=1

inf
w∈Y
‖wk − w‖2X

)1/2

. (13)

The set {χi, 1 ≤ i ≤ ∆N} contains the ∆N first POD modes of span{w1, . . . , wK}.

Algorithm 2 [XÑmax
, εmax] = POD/Greedy(∆N,N, ε, µ∗,Ξtrain)

1: Set XN = {0}, N = 0, εmax =∞;
2: while εmax > ε and N < N do
3: ekN,proj(µ

∗)← uN k(µ∗)− projXN
(uN k(µ∗)), 1 ≤ k ≤ K;

4: for i = 1, . . . ,min{∆N,N −N} do
5: XN+i ← XN ⊕ span{POD({ekN,proj(µ

∗), 1 ≤ k ≤ K}, i)};
6: end for
7: µ∗ ← arg maxµ∈Ξ ∆K

N (µ);
8: εmax ← ∆K

N (µ∗);
9: N ← N + ∆N ;

10: end while
11: Ñmax ← N ;

We next introduce as Algorithm 2 the POD/Greedy sampling procedure of
[3] (see also [17]). Let V ⊆ D. For specified ∆N , an RB space dimension upper

3We note that (χi, χj)X =
∑K
k=1

∑K
l=1 ψ

i
kψ

j
l (wk, wl)X = K(ψi)TCψj = δi j .
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boundN , an initial parameter value µ∗ ∈ V, a finite train sample Ξtrain ⊂ V, and
an error bound tolerance ε, Algorithm 2 returns Ñmax ≤ N nested RB spaces
X1 ⊂ . . . ⊂ XÑmax

(note that since the spaces are nested by construction we

only specify XÑmax
as the return argument) and εmax = maxµ∈Ξtrain

∆K
Ñmax

(µ)

such that either εmax ≤ ε or Ñmax = N . (Note in the POD/Greedy we may
take the L2([0, tf ];X) RB error bound ∆K

N,X rather than the L2(Ω) RB error

bound ∆K
N [17]; for the linear coercive case, ∆K

N,X(µ) = σ
1/2
LB (µ)∆K

N (µ).)
We initialize the POD/Greedy by setting N = 0, XN = {0}, and εmax =∞.

Then, while the dimension of the RB space is less than N and the tolerance
ε is not satisfied over Ξtrain, we enrich the RB space: we first compute the
projection error ekN,proj(µ

∗) = uN k(µ∗)− projXN
(uN k(µ∗)), 1 ≤ k ≤ K, where

projXN
(w) denotes the X-orthogonal projection of w ∈ XN onto XN ; we next

increase the dimension of the RB space by adding the ∆N first POD modes of
the projection error to the current RB space; we then greedily determine the
next parameter value over Ξtrain based on the a posteriori error estimator at the
final time. We invoke Construction-Evaluation procedures for the computation
of the maximum RB error bound over Ξtrain (line 7 of Algorithm 2); since the
RB error bound calculation is very fast (N -independent in the limit of many
evaluations), we may choose Ξtrain very dense.

We finally introduce as Algorithm 3 the hp-POD/Greedy algorithm. For
specified ∆N , an RB space dimension upper bound N , error bound tolerances
ε1tol and ε2tol, an initial parameter anchor point µ̂0

(1), and an initial train sam-
ple Ξtrain,(1) ⊂ D of cardinality ntrain, Algorithm 3 constructs a hierarchical

splitting of D into M = M(ε1tol, N) subdomains VBm , 1 ≤ m ≤ M , and asso-
ciates to each parameter subdomain an RB space XNmax,Bm ,Bm of dimension

Nmax,Bm ≤ Nmax ≤ N such that for each subdomain VBm the tolerance ε1tol > 0

is satisfied over Ξtrain,Bm ⊂ VBm by ∆̃K
R,Bm and the tolerance ε2tol is satisfied

over Ξtrain,Bm by ∆K
Nmax,Bm . We introduce here ∆̃K

R,Bl
as the RB error bound

associated with the temporary space X̃R,Bl
, and we recall that ∆K

Nmax,Bm is

the RB error bound associated with the returned space XNmax,Bm ,Bm . (In the
hp-RB Online stage we may readily extract spaces XN,Bm ⊂ XNmax,Bm of any
dimension N , 1 ≤ N ≤ Nmax,Bm .)

We now comment on the constant η > 1, which in turn determines the di-
mension R of the temporary spaces X̃R,Bl

(lines 3-6): we successively increment

R and evaluate ∆̃K
R,Bl

(µ̂0
Bl

) until ∆̃K
R,Bl

(µ̂0
Bl

) < ε1tol/η. For η > 1, the tolerance

ε1tol is then satisfied by ∆̃K
R,Bl

in a neighborhood of the anchor point µ̂0
Bl

, and
we thus avoid arbitrarily small subdomains. We note that η = ∞ corresponds
to R = K; however, typically R � K is sufficient and we may thus choose η
close to (but larger than) unity.

We next consider the splitting of any particular subdomain VBl
⊂ D into

two new subdomains V(Bl,0) ⊂ VBl
and V(Bl,1) ⊂ VBl

. We suppose that VBl
is

equipped with a train sample Ξtrain,Bl
⊂ VBl

. Given a parameter anchor point
µ̂0
Bl
∈ VBl

, we first compute the truth field uN k(µ̂0
Bl

), 1 ≤ k ≤ K, and define
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Algorithm 3 hp-POD/Greedy(Ξtrain,Bl
, µ̂0
Bl
, ε1tol, ε

2
tol, N , ∆N)

1: Set R← 0, X̃R,Bl
← {0};

2: Compute uN k(µ̂0
Bl

), 1 ≤ k ≤ K;

3: while ∆̃K
R,Bl

(µ̂0
Bl

) > ε1tol/η do
4: R← R+ 1;
5: X̃R,Bl

← span{POD({uN k(µ̂0
Bl

), 1 ≤ k ≤ K}, R)};
6: end while
7: µ̂1

Bl
← arg maxµ∈Ξtrain,Bl

∆̃K
R,Bl

(µ) and set µ̂0
(Bl,0) ← µ̂0

Bl
, µ̂0

(Bl,1) ← µ̂1
Bl

;

8: if maxµ∈Ξtrain,Bl
∆̃K
R,Bl

(µ) > ε1tol then
9: Determine Ξtrain,(Bl,0),Ξtrain,(Bl,1);

10: XNmax,(Bl,0)
,(Bl,0) ← hp-POD/Greedy(Ξtrain,(Bl,0), µ̂

0
(Bl,0), ε

1
tol, ε

2
tol, N,∆N);

11: XNmax,(Bl,1)
,(Bl,1) ← hp-POD/Greedy(Ξtrain,(Bl,1), µ̂

0
(Bl,1), ε

1
tol, ε

2
tol, N,∆N);

12: else
13: [XNmax,Bl

,Bl
, εmax] = POD/Greedy(∆N,N, ε2tol, µ̂

0
Bl
,Ξtrain,Bl

);

14: if εmax > ε2tol then
15: Discard XNmax,Bl

,Bl
;

16: Determine Ξtrain,(Bl,0),Ξtrain,(Bl,1);

17: XNmax,(Bl,0)
,(Bl,0) ← hp-POD/Greedy(Ξtrain,(Bl,0), µ̂

0
(Bl,0), ε

1
tol, ε

2
tol, N,∆N);

18: XNmax,(Bl,1)
,(Bl,1) ← hp-POD/Greedy(Ξtrain,(Bl,1), µ̂

0
(Bl,1), ε

1
tol, ε

2
tol, N,∆N);

19: else
20: Let m = (number of spaces returned so far +1) and set Bm ≡ Bl;
21: return XNmax,Bm ,Bm ≡ XNmax,Bl

,Bl
;

22: end if
23: end if

V(1) = D

V(1,0)

V(1,1) V(1,1)

V(1,0,0)

V(1,0,1)

V(1,0,0)

V(1,1,0)

V(1,1,1)

V(1,0,1)

Figure 1: Two levels of h-refinement and associated binary tree; here L = 3.
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the temporary RB space X̃R,Bl
associated with the subdomain VBl

as discussed

above. The next step is to evaluate ∆̃K
R,Bl

(µ) for all µ ∈ Ξtrain,Bl
in order to

identify a second anchor point (line 7) µ̂1
Bl

= arg maxµ∈Ξtrain,Bl
∆̃K
R,Bl

(µ). We

note that the two anchor points µ̂0
Bl

and µ̂1
Bl

are maximally different in the
sense of the RB error bound, and thus provide good initial parameter values for
two new RB spaces.

We now introduce a distance function, δ : D × D → R; for example we
may choose Euclidean distance. We can then implicitly define two new subdo-
mains V(Bl,0) ⊂ VBl

and V(Bl,1) ⊂ VBl
based on the distance to the two anchor

points: V(Bl,0) = {µ ∈ VBl
: δ(µ̂0

Bl
, µ) < δ(µ̂1

Bl
, µ)}, and V(Bl,1) = {µ ∈ VBl

:
δ(µ̂0

Bl
, µ) ≥ δ(µ̂1

Bl
, µ)}. Note that by this definition, parameter values that are

equidistant from the two anchor points µ̂0
Bl

and µ̂1
Bl

belong to V(Bl,1). The
final step of splitting is to construct a new train sample associated with each
of the two new subdomains (line 9). We first enrich (by adding random points,
say) the current train sample Ξ̃train,Bl

⊃ Ξtrain,Bl
such that Ξ̃train,Bl

⊂ VBl
has

cardinality 2ntrain; we then define

Ξtrain,(Bl,i) ≡ Ξ̃train,Bl
∩ V(Bl,i), i = 0, 1. (14)

We note that we may choose the initial train sample for the hp-POD/Greedy to
be rather sparse compared to the train sample for the standard POD/Greedy,
since we effectively construct an adaptively refined train sample (over D) dur-
ing the parameter domain partition process. The adaptively generated hp-
POD/Greedy train sample associated with a given subdomain is typically much
smaller than the (global) train sample associated with the standard POD/Greedy.

We apply this splitting scheme recursively in order to partition D into the
final M subdomains; we can thus organize the subdomains in a binary tree. In
Figure 1 we illustrate the procedure, as well as the associated binary tree, for
two levels of recursive splitting.

The final step is p-refinement: we identify the nested RB spaces to be associ-
ated with the subdomain (line 13). If the POD/Greedy returns with εmax > ε2tol,
we discard the generated basis and successively perform additional subdomain
splitting and POD/Greedy steps until the tolerance is satisfied with at most
N basis functions (lines 15-18). This additional splitting step permits simul-
taneous control over ε2tol and Nmax. We note that ∆N—the number of POD
modes to include at each Greedy iteration during p-refinement—is typically cho-
sen small: small ∆N leads to more optimal spaces albeit at a higher (Offline)
computational cost.

Under the assumption that N is chosen such that R is always smaller than N
(note we can always “re-specify” N if at any point R > N) the hp-POD/Greedy
algorithm provides an Online dataset such that the RB error bound tolerance
ε2tol is satisfied (over the train samples) with at most Nmax ≤ N basis functions.
We hope to achieve this goal without the expensive execution of lines 15–18: it
is our intent that if ε1tol is satisfied with R basis functions, then ε2tol < ε1tol will be
satisfied with at most N > R basis functions; whenever this is true, we discard
only R basis functions at each level of splitting.

11



We regard lines 15–18 as insurance: if ε2tol is not satisfied with at most
N basis functions—even if ε1tol was satisfied with R basis functions—we dis-
card the computed candidate space, split the subdomain, and again execute
hp-POD/Greedy in a recursive manner. Ideally ε1tol is chosen such that the in-
surance is rarely invoked and Nmax,Bm ≤ N is close to N for most m ∈ [1,M ].
If the insurance is invoked too often—ε1tol is too large with respect to the target
N—the Offline computational cost will be large. If the insurance is rarely or
never invoked and Nmax,Bm � N for most m ∈ [1,M ], then ε1tol is too small
with respect to the target N .

Remark 1. We note that as the number of subdomains M increases, the hp-
POD/Greedy algorithm in general requires a larger (Offline) computational cost
and generates a larger Online Dataset than the standard (p-type) POD/Greedy
method. However, in the nonlinear case, the O(N4) cost and storage associated
with the RB error bound helps to moderate this increase: an increase in M
provides a decrease in N such that the product MN4 grows only modestly. We
further note that, thanks to the efficient log2(M) subdomain search, M can be
very large without compromise to the Online computational cost. In practice we
thus seek M to balance Offline cost and Online storage against Online speed.

Remark 2. As discussed in [12, 11], we must employ a “nominal” lower
bound ρ∗ for the stability factor ρN for nonlinear parabolic problems during
the POD/Greedy: the SCM, which allows for construction of the rigorous lower
bound ρLB

N , can only be performed after generation of the RB space. In this
context ρ∗ is a conservatively chosen constant or (say) a linear function of µ.
Note that the rigor of our error bounds in the Online stage is not compromised:
after completion of the POD/Greedy we perform the SCM,4 and subsequently
the Online RB error bounds are rigorous.

4.2 A Priori Convergence Analysis

We now introduce an a priori convergence theory for Algorithm 3. Selection of
relatively few and optimal subdomains—small M for specified ε1tol—is crucial to
reduce both Offline cost and Online cost and storage. We consider here the class
of linear scalar problems (b = 0, d = 1). For simplicity, we consider the case of a
single parameter (P = 1); we assume a Backward Euler temporal discretization
(θ = 1); and we consider the case in which m(·, ·;µ) is parameter-independent
and in particular equal to the L2(Ω) inner product: m(w, v;µ) ≡ m(w, v) ≡∫

Ω
wv.
We recall that the bilinear form a and the linear functional f admit the

affine expansions

a(·, ·;µ) =

Qa∑
q=1

aq(·, ·)Θq
a(µ), f(·;µ) =

Qf∑
q=1

fq(·)Θq
f (µ), (15)

4We note that after completion of the hp-POD/Greedy we can apply the SCM algorithm
independently for each parameter subdomain; we thus expect a reduction in the SCM (Online)
evaluation cost since the size of the parameter domain is effectively reduced.
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for all µ ∈ D. For our purposes in this section, we shall require that

a(·, ·;µ) = a1(·, ·) +

Qa∑
q=2

aq(·, ·)Θq
a(µ) ≡ a1(·, ·) + aII(·, ·;µ), (16)

where a1 is an X-inner product and aII is L2-continuous in its second argument.
Specifically we require, for any v ∈ X, w ∈ X,

a1(v, w) ≤ ‖v‖X‖w‖X , (17)

aq(v, w) ≤ γq‖v‖X‖w‖L2 , 2 ≤ q ≤ Qa. (18)

We also require that the fq : X → R are L2-bounded:

fq(v) ≤ ‖fq‖L2‖v‖L2 , 1 ≤ q ≤ Qf . (19)

For simplicity we suppose that ‖ · ‖X = ‖ · ‖H1 ; hence ‖v‖L2 ≤ ‖v‖X for all
v ∈ X. We further require that the Θq

a : D → R and Θq
f : D → R are

Lipschitz continuous: for any µ1 ∈ D, µ2 ∈ D, there exists constants Lqa and
Lqf , 1 ≤ q ≤ Qa, such that

|Θq
a(µ1)−Θq

a(µ2)| ≤ Lqa|µ1 − µ2|, 1 ≤ q ≤ Qa, (20)

|Θq
f (µ1)−Θq

f (µ2)| ≤ Lqf |µ1 − µ2|, 1 ≤ q ≤ Qf . (21)

We introduce lower and upper bounds over D for the coercivity and continuity
constants of a(·, ·;µ):

0 < α ≡ min
µ∈D

α(µ) = min
µ∈D

inf
v∈X

a(v, v;µ)

‖v‖2X
, ∞ > γ ≥ max

µ∈D
sup
v∈X

sup
w∈X

a(v, w;µ)

‖v‖X‖w‖X
,

(22)

respectively. For simplicity of notation we suppose, for v, w ∈ X and any µ ∈ D,
that

aII(w, v;µ) ≤ γ‖w‖X‖v‖L2 . (23)

For our theororetical arguments below we assume α ≤ 1 and γ ≥ 1. The coer-
civity lower bound αLB(µ) shall be given as αLB(µ) = α for all µ ∈ D. We em-
phasize that all our assumptions in this section are satisfied by our convection-
diffusion numerical example of Section 5.1.

We consider Algorithm 3 with Nmax = ∞. Hence p-refinement—execution
of POD/Greedy in line 13—will converge (εmax ≤ ε2tol) for any specified ε2tol >
0. We thus focus here on h-refinement; we show in particular that the hp-
POD/Greedy algorithm generates a finite number of parameter subdomains.

To this end, we shall require the following continuity result.

Lemma 1. For any µ1 ∈ D, µ2 ∈ D, and any v ∈ X, w ∈ X, there exist
positive constants ca and cf such that

|a(v, w;µ1)− a(v, w;µ2)| ≤ ca|µ1 − µ2|‖v‖X‖w‖L2 , (24)

|f(v;µ1)− f(v;µ2)| ≤ cf |µ2 − µ2|‖v‖L2 . (25)
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Proof. We refer to Appendix A for the proof.

We next define, for any µ ∈ D and any vk ∈ X, 1 ≤ k ≤ K, the “energy-
norm”

|||vk|||µ ≡

(
m(vk, vk) + ∆t

k∑
k′=1

a(vk
′
, vk

′
;µ)

)1/2

. (26)

We shall require the following stability result.

Lemma 2. For any µ ∈ D, the solution uN k(µ) ∈ XN , 1 ≤ k ≤ K, of (4) for
θ = 1 satisfies

|||uN k(µ)|||µ ≤ max
µ∈D
‖f(·;µ)‖X′

√
tk

α
, 1 ≤ k ≤ K. (27)

Proof. We refer to Appendix B for the proof.

For µ1 ∈ D, µ2 ∈ D, and for 1 ≤ k ≤ K, we define ∆ukN ≡ ukN (µ1)−ukN (µ2).
We shall require the following continuity result.

Lemma 3. Assume that µ1 ∈ D and µ2 ∈ D belong to the same parameter
subdomain (say) VBl

⊂ D, and let XN denote the RB space associated with
VBl

. Let ukN (µ1) ∈ XN and ukN (µ2) ∈ XN , 1 ≤ k ≤ K, satisfiy (5) for θ = 1.
Then

|||∆ukN |||µ2
≤ C̃|µ1 − µ2|, 1 ≤ k ≤ K, (28)

where

C̃ =

(
2tk

α3

(
α2c2f + c2a max

µ∈D
‖f(·;µ)‖2X′

))1/2

(29)

Proof. We refer to Appendix C for the proof.

We shall finally require the following continuity result, which is a discrete
counterpart of Proposition 11.1.11 of [18].

Lemma 4. Assume that µ1 ∈ D and µ2 ∈ D belong to the same parameter
subdomain (say) VBl

⊂ D, and let XN denote the RB space associated with
VBl

. Let ukN (µ1) ∈ XN and ukN (µ2) ∈ XN , 1 ≤ k ≤ K, satisfiy (5) for θ = 1.
Then the finite difference (∆ukN −∆uk−1

N )/∆t is L2-bounded in time:(
1

∆t

k∑
k′=1

‖∆uk
′

N −∆uk
′−1
N ‖2L2

)1/2

≤ Ĉ|µ1 − µ2|, (30)

where

Ĉ =

(
3

α2

(
γ2αC̃2 + tkα2c2f + tkc2a max

µ∈D
‖f(·;µ)‖X′

))1/2

(31)
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Proof. We refer to Appendix D for the proof.

We now claim

Proposition 1. Let D ⊂ R and let |D| denote the length of D. For specified
ε1tol, Algorithm 3 terminates for finite M = M(ε1tol) subdomains; moreover, the
convergence of the h-refinment stage is first order in the sense that

M(ε1tol) ≤ max

{
1,

C

ε1tol

}
, C = C(η, |D|). (32)

Proof. The proof has two steps. We first show that the RB error bound is
Lipschitz continuous. We then relate this result to our particular procedure to
prove convergence of the hp-POD/Greedy algorithm.

Step 1. We recall that for µ ∈ D, the Riesz representation êkN (µ) of the
residual rkN (·;µ), 1 ≤ k ≤ K, satisfies

(êkN , v)X = rkN (v;µ), ∀v ∈ XN . (33)

Let µ1 ∈ D, µ2 ∈ D. We define ∆êkN ≡ êkN (µ1) − êkN (µ2). From (33) we note
that by linearity

(∆êkN , v)X = f(v;µ1)− f(v;µ2)︸ ︷︷ ︸
I

+ a(ukN (µ2), v;µ2)− a(ukN (µ1), v;µ1)︸ ︷︷ ︸
II

+
1

∆t

(
m(ukN (µ2)− uk−1

N (µ2), v)−m(ukN (µ1)− uk−1
N (µ1), v)

)
︸ ︷︷ ︸

III

, (34)

for all v ∈ XN and for 1 ≤ k ≤ K. For the term I we invoke Lemma 1 directly
to obtain

|f(v;µ1)− f(v;µ2)| ≤ cf |µ1 − µ2|‖v‖X , ∀v ∈ X. (35)

For the term II we first write

|a(ukN (µ2), v;µ2)− a(ukN (µ1), v;µ1)|
= |a(ukN (µ1), v;µ2)− a(ukN (µ1), v;µ1)− a(∆ukN , v;µ2)|. (36)

Then, by the triangle inequality, Lemma 1, continuity, and (22), we obtain

|a(ukN (µ2), v;µ2)− a(ukN (µ1), v;µ1)|
≤ |a(∆ukN , v;µ2)|+ ca‖ukN (µ1)‖X‖v‖X |µ1 − µ2|

≤ γ‖∆ukN‖X‖v‖X + ca‖ukN (µ1)‖X‖v‖X |µ1 − µ2|. (37)
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For the term III we invoke linearity, the Cauchy-Schwarz inequality, and the
Poincaré inequality.5 to obtain

|m(ukN (µ2)−uk−1
N (µ2), v)−m(ukN (µ1)−uk−1

N (µ1), v)| = |m(∆ukN−∆uk−1
N , v)|

≤ ‖∆ukN −∆uk−1
N ‖L2‖v‖L2 ≤ ‖∆ukN −∆uk−1

N ‖L2‖v‖X . (38)

We now insert the expressions for I, II, and III into (34); for v = ∆êkN we
then obtain

(∆êkN ,∆ê
k
N )X ≤ cf |µ1 − µ2|‖∆êkN‖X + γ‖∆ukN‖X‖∆êkN‖X

+ ca‖ukN (µ1)‖X‖∆êkN‖X |µ1 − µ2|+
1

∆t
‖∆ukN −∆uk−1

N ‖L2‖∆êkN‖X . (39)

We divide through in (39) by ‖∆êk‖X , square both sides, and invoke the in-
equality (A + B + C + D)2 ≤ 4(A2 + B2 + C2 + D2) for A,B,C,D ∈ R to
obtain

‖∆êk‖2X ≤ 4|µ1 − µ2|2
(
c2f + c2a‖ukN (µ1)‖2X

)
+

4

∆t2
‖∆ukN −∆uk−1

N ‖2L2 + 4γ2‖∆ukN‖2X . (40)

We multiply through in (40) by ∆t, substitute k for k′, and sum over k′ to
obtain

∆t

k∑
k′=1

‖∆êk
′
‖2X ≤ 4|µ1 − µ2|2

(
c2f t

k + c2a∆t

k∑
k′=1

‖uk
′

N (µ1)‖2X
)

+ 4γ2

(
1

∆t

k∑
k′=1

‖∆uk
′

N −∆uk
′−1
N ‖2L2 + ∆t

k∑
k′=1

‖∆uk
′

N‖2X

)
. (41)

Next, from coercivity and Lemma 2 we note that

∆t
k∑

k′=1

‖uk
′

N (µ1)‖2X ≤
|||ukN (µ1)|||2µ1

α
≤ tk

α2
max
µ∈D
‖f(·;µ)‖2X′ . (42)

Further, from coercivity and (22), and Lemma 3 and Lemma 4, we note that

4γ2

(
1

∆t

k∑
k′=1

‖∆uk
′

N −∆uk
′−1
N ‖2L2 + ∆t

k∑
k′=1

‖∆uk
′

N‖2X

)

≤ 4γ2

(
1

∆t

k∑
k′=1

‖∆uk
′

N −∆uk
′−1
N ‖2L2 + ∆t

k∑
k′=1

a(∆uk
′

N ,∆u
k′

N ;µ2)

α

)

≤ 4γ2|µ1 − µ2|2
(
Ĉ2 +

C̃2

α

)
(43)

5We suppose here for simplicity that ‖ · ‖X = ‖ · ‖H1 ; hence ‖v‖L2 ≤ ‖v‖X for all v ∈ X
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From (41) with (42) and (43) we thus obtain

∆t

k∑
k′=1

‖∆êk‖2X ≤ c2|µ1 − µ2|2, (44)

where

c ≡ 2

(
tk

α2

(
α2c2f + c2a max

µ∈D
‖f(·;µ)‖2X′

)
+ γ2

(
C̃2 +

Ĉ2

α

))1/2

. (45)

By the definition of the RB error bound (recall that we use αLB(µ) = α) and
the reverse triangle inequality we finally obtain

|∆k
N (µ1)−∆k

N (µ2)| ≤

∣∣∣∣∣
(

∆t

α

k∑
k′=1

‖êkN (µ1)‖2X

)1/2

−

(
∆t

α

k∑
k′=1

‖êkN (µ2)‖2X

)1/2∣∣∣∣∣
≤

(
∆t

α

k∑
k′=1

‖∆êkN‖2X

)1/2

≤ c
√
α
|µ1 − µ2|. (46)

Step 2. The next step is to relate (46) to the convergence of Algoritm 3.
The algorithm generates a partition of D into M subdomains. Either M = 1,
in which case the proof is complete, or M > 1. We now examine the case
M > 1. We consider the splitting of any particular subdomain VBl

⊂ D into
two new subdomains V(Bl,0) ⊂ VBl

and V(Bl,1) ⊂ VBl
. We denote here by

µ̂0 = µ̂0
Bl

= µ̂0
(Bl,0) the anchor point associated with VBl

and V(Bl,0), and by

µ̂1 = µ̂1
Bl

= µ̂0
(Bl,1) the anchor point associated with V(Bl,1). We assume that

the error tolerance at the final time is not satisfied over (a train sample over)
VBl

; hence ε1tol < ∆̃K
R,Bl

(µ̂1). We recall that by construction of our procedure

∆̃K
R,Bl

(µ̂0) ≤ ε1tol/η for specified η > 1. We can thus invoke (46) for µ1 = µ̂1,

µ2 = µ̂0, and ∆k
N replaced by ∆̃K

R,Bl
to conclude that

ε1tol −
ε1tol

η
< |∆̃K

R,Bl
(µ̂1)− ∆̃K

R,Bl
(µ̂0)| ≤ c

√
α
|µ̂1 − µ̂0|, (47)

and hence

|µ̂1 − µ̂0| >
ε1tol

√
α(η − 1)

cη
. (48)

We now split VBl
into V(Bl,0) and V(Bl,1) based on Euclidean distance to the

two anchor points. It is clear that

|V(Bl,i)| ≥
1

2
|µ̂1 − µ̂0| >

ε1tol

√
α(η − 1)

2cη
, i = 0, 1. (49)
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The partition procedure generates M > 1 distinct subdomains VBm , 1 ≤ m ≤
M .6 Each of these subdomains is the result of a splitting of a “parent” subdo-
main VBl

⊃ VBm (for some Bl, 1 ≤ l ≤ L−1). Since Bl above was arbitrary, we
can successively set VBl

to be the parent of each of the M “leaf” subdomains
and conclude that

|VBm | >
ε1tol

√
α(η − 1)

2cη
, 1 ≤ m ≤M. (50)

We define δM ≡ min1≤m≤M |VBm |; hence in particular δM >
ε1tol
√
α(η−1)

2cη .
We complete the proof by a contradiction argument. Assume that M ≥
|D|2cη

ε1tol
√
α(η−1)

. Thus

MδM >
|D|2cη

ε1tol

√
α(η − 1)

ε1tol

√
α(η − 1)

2cη
= |D|, (51)

which is clearly a false statement. We conclude thatM = M(ε1tol) < C(η, |D|)/ε1tol

with C(η, |D|) = |D|2cη√
α(η−1) . We finally note that Algorithm 3 is convergent since

the POD/Greedy (line 13) will be able to satisfy the error bound tolerance ε2tol

within each of the M final subdomains.

Remark 3. The requirement η > 1 reappears in the proof in (47). We note
that we can not obtain a positive lower bound for the distance between the two
anchor points if η ≤ 1.

Remark 4. If we assume only f ∈ X ′ (and not in L2) and furthermore aII

only X-continuous in both arguments (and not L2-continuous in the second
argument), then we can still obtain Proposition 1 albeit with an additional factor
1/∆t in the “constant” C. However, we note that this 1/∆t factor is in this case
relatively “benign”: we can not in any event let “∆t→ 0” in practice because of
the increase in Online computational cost. (In contrast, we can let “N → ∞”
since larger N affects only Offline cost.)

We recall that all the hypotheses of Proposition 1 are satisfied by our numer-
ical example in Section 5.1.

Remark 5. Proposition 1 guarantees that the partition algorithm (h-refinement)
is convergent. However, the convergence is very slow and hence subsequent p-
refinement is in practice necessary. But note that with only a global Lipschitz
constant c in our proof, our bound (32) is very pessimistic, and in particular
does not reflect any adaptivity in the partition. In practice we expect that the
algorithm adaptively generates smaller subdomains in areas of D for which the
field exhibits larger variations with the parameters.

6In fact, we should interpret M here as the number of subdomains generated by Algorithm
3 so far; the VBm , 1 ≤ m ≤ M , are not necessarily the final M subdomains. With this
interpretation we thus do not presume termination of the algorithm.
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5 Numerical Results

We now present numerical results for two model problems. We demonstrate
that in both cases the hp-RB method yields significant Online computational
savings relative to a standard (p-type) RB approach; we also show that the
partitions of D may reflect the underlying parametric sensitivity of the prob-
lems. All our computational results are obtained via rbOOmit [19], which is
an RB plugin for the open-source FE library libMesh [20]. All computations
are performed on a 2.66 GHz processor. For the hp-RB approximations below,
we have used a “scaled” Euclidean distance for the distance function δ(·, ·): we
map D (a rectangle in both our examples) to D̂ = [0, 1]P (via an obvious affine
transformation) and compute the Euclidean distance on D̂. For the constant η
in Algorithm 3 we choose η = 1.1.

5.1 Convection-Diffusion Problem

We consider the nondimensional temperature u which satisfies the convection-
diffusion equation in the spatial domain Ω = {(x1, x2) : x2

1 + x2
2 < 2} for the

discrete time levels tk = 0.01k, 0 ≤ k ≤ 100; we employ Backward Euler tem-
poral discretization (hence θ = 1). We impose a parameter-dependent velocity
field V (µ) ≡ V (ν, ϕ) ≡ (ν cosϕ, ν sinϕ) and we prescribe a constant forcing
term q = 10. We specify homogeneous Dirichlet boundary conditions and zero
initial conditions. We denote a particular parameter value µ ∈ D by µ = (ν, ϕ)
and we introduce the parameter domain D = [0, 10] × [0, π] ⊂ RP=2. For this
problem, we focus for simplicity on the RB field approximation and thus we do
not consider any particular outputs.

We next introduce the forms

m(w, v;µ) =

∫
Ω

wv,

a(w, v;µ) =

∫
Ω

(
∇w · ∇v + (V (µ) · ∇w)v

)
,

f(v;µ) = q

∫
Ω

v = 10

∫
Ω

v,

(52)

for v, w ∈ X, where X = H1
0 (Ω). Our problem can then be expressed in the

form (4) with b = 0; note that our only parameter-dependent form is a, which
admits an affine expansion (3) with Qa = 3. We note that this problem satisfies
all the theoretical hypothesis of Proposition 1.7 For our truth approximation
we choose a P2 FE space XN ⊂ X of dimension N = 1889.

To obtain a benchmark for comparison we first perform a standard (p-type)
POD/Greedy: we specify ε = 10−5 for the target tolerance, ∆N = 1 for the
number of POD modes to include at each greedy iteration, µ∗ = (0, 0) for the

7Eq. (16) is satisfied with aII(w, v;µ) =
∫
Ω(V (µ) · ∇w)v. We note that aII is L2(Ω)

continuous in its second argument since by the Cauchy-Schwarz inequality aII(w, v) ≤(∫
Ω(V (µ) · ∇w)2

)1/2(∫
Ω v

2
)1/2

.
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Figure 2: Convergence: hp-RB (triangles (M = 22) and squares (M = 278))
and p-type RB (circles). In the hp-RB cases, the error bound is the maximum
over all subdomains for a given N .

initial parameter value, and a train sample Ξtrain ⊂ D of size 900. We then
execute Algorithm 2 (we also “specify” N = ∞ such that the POD/Greedy
terminates for ε satisfied over Ξtrain). The tolerance is in this case satisfied for
Nmax = Ñmax = 129.

We next perform two hp-POD/Greedy computations. In the first we specify
ε1tol = 5, ε2tol = 10−5, N = 65, ∆N = 1, µ̂0

(1) = (0, 0), and a train sample
Ξtrain,(1) of size 64. In this case Algorithm 3 terminates for M = 22 subdomains

with Nmax = N = 65 (recall that Nmax ≡ max1≤m≤M Nmax,Bm). In the second
case we specify ε1tol = 1.5, ε2tol = 10−5, N = 45, ∆N = 1, µ̂0

(1) = (0, 0), and
a train sample Ξtrain,(1) of size 25. In this case Algorithm 3 terminates for

M = 278 subdomains with Nmax = N = 45. The maximum RB L2(Ω) error
bound εmax

N,M (over the train samples) over all M subdomains for each of the
cases M = 22 and M = 278, as well as the p-type reference case M = 1, are
plotted in Figure 2 as functions of N . We note that larger M yields smaller N ,
as desired.

We show the two partitions of D in Figure 3.8 Note that the field variable
exhibits larger variations with ϕ for larger ν, and hence we would expect the
subdomain size to decrease with increasing ν. However, this is not the case in
Figure 3(b) except for smaller ν. By way of explanation we note that when
the field varies significantly with time, which is indeed the case for large ν,
R—the number of POD modes in the temporary space X̃R,Bl

—will be larger.

We suspect that the additional POD modes included in the X̃R,Bl
associated

with subdomains for ν larger than approximately 5 may also represent some

8To ensure a good spread over D of the rather few (25 or 64 for our two examples) initial
train points, we use for Ξtrain,(1) a deterministic initial regular grid. (For the train sample
enrichment, we use random points.) Since some train points belong to a regular grid, the
procedure may produce “aligned” subdomain boundaries, as seen in Figure 3.
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Figure 3: Parameter domain partitions VBm , 1 ≤ m ≤ M , for the convection-
diffusion problem.

parametric variations in the field and hence account for the “non-monotonic”
(in ν) subdomain size.

We note that the hp-RB method indeed yields a significant Online speedup.
Online p-type RB calculation of the RB solution coefficients and error bound
for N = 129 basis functions requires 1.4 · 10−2 seconds. In contrast, Online
hp-RB calculation of the RB solution coefficients and error bound for the case
with M = 22 subdomains and N = 65 requires 3.3 · 10−3 seconds, and for
the case with M = 278 subdomains and N = 45 requires 1.8 · 10−3 seconds; in
both cases, the search for the subdomain containing the new online parameter is
negligible (O(10−6) seconds). (The timing results are averages over 100 Online
calculations for randomly selected µ ∈ D.)

Of course Offline cost and Online storage are larger for the hp-RB than for
the standard (p-type) RB: the Offline stage requires 29.6 minutes and 3.5 hours
for the hp-RB computations (M = 22 and M = 278, respectively) and only 13.4
minutes for the standard RB; the Online Dataset requires 25.3 Mbytes and 142.9
Mbytes for the hp-RB computations (M = 22 and M = 278, respectively) and
only 5.7 Mbytes for the standard RB. In particular Offline cost for the M = 278
computation is admittedly very large compared to the Offline cost for the p-type
computation. Of course, even in our “real time” and “many query” contexts,
the larger Offline cost associated with the hp-RB method may be an issue; we
must thus seek to balance the increase in Offline cost against the decrease in
Online cost by appropriate choices of the parameters ε1tol and N . We note that
for this problem, our M = 22 hp-RB computation provides significant Online
speedup at only modest increase in Offline cost.

The additional splitting step—the “insurance” provided by lines 15–18 in
Algorithm 3—was never invoked for either hp-POD/Greedy computation. For
the computation with specified N = 65, the average of Nmax,Bm , 1 ≤ m ≤
M = 22 is 57.3. For the computation with specified N = 45, the average of
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Nmax,Bm , 1 ≤ m ≤M = 278, is 37.9. We conclude that in both cases we could
have chosen ε1tol somewhat larger (at the risk of invoking insurance) in order to
obtain a more optimal partition with respect to the target N .

We finally note that calculation of the truth (4) for this problem with
N = 1889 requires about 0.9 seconds. The average speedup relative to a truth
calculation is approximately 64 for the p-type Online calculation with N = 129,
and approximately 273 and 500 for the hp-RB Online calculations (N = 65,
M = 22, and N = 45, M = 278, respectively).

5.2 Boussinesq Problem

We consider natural convection in the two-dimensional enclosure Ω = (0, 5)2\P,
where P is the “pillar” (2.5− 0.1, 2.5 + 0.1)× (0, 1), for the discrete time levels
tk = 0.0016k, 0 ≤ k ≤ 100; we employ Crank-Nicolson temporal discretization
(hence θ = 0.5). The direction of the acceleration of gravity is defined by the
unit vector (− sinφ,− cosφ). We solve for the field variables V1, V2 (the x and y
components of the fluid velocity) and ϑ (the temperature) over Ω; hence the field
has dimension d = 3. The “roof” of the enclosure is maintained at temperature
ϑ = 0, the sides and base of the enclosure are perfectly thermally insulated, and
the top and sides of the pillar are subject to a uniform heat flux of magnitude
Gr (the Grashof number); we impose no-slip velocity conditions on all walls.
We denote a particular parameter value µ ∈ D by µ = (µ1, µ2) = (Gr, φ) and
we introduce the parameter domain D = [4000, 6000] × [0, 0.2] ⊂ RP=2. Note
we set the Prandtl number, Pr, here to 0.71 (for air).

Our goal is to study parametric dependence of the temperature in regions
at or near the top of the heated pillar (or “fin”) in the presence of natural
convection, and hence we are interested in local average-temperature outputs.
These outputs can be expressed as L2(Ω)-bounded functionals of ϑ, namely,

sn(t;µ) = `n(ϑ(t;µ), µ) =
1

µ1|Dn|

∫
Dn

ϑ(t;µ) ; (53)

here D1 = [2.2, 2.4] × [1, 1.1], D2 = [2.4, 2.6] × [1, 1.1], D3 = [2.6, 2.8] × [1, 1.1]
are three small rectangles above the pillar. The domain geometry and output
regions are depicted in Figure 4.

We introduce the forms

m(w, v;µ) =

∫
Ω

wivi,

a(w, v;µ) =

∫
Ω

(
∂w1

∂xj

∂v1

∂xj
+
∂w2

∂xj

∂v2

∂xj
+

1

Pr

∂w3

∂xj

∂v3

∂xj

)
,

b1(w, v;µ) = −
√
µ1Pr sinµ2

∫
Ω

w3v1 −
√
µ1Pr cosµ2

∫
Ω

w3v2,

b2(w, z, v;µ) =
1

2
√
µ1Pr

∫
Ω

(
∂wizj
∂xj

+ zj
∂wi
∂xj

)
vi,

f(v;µ) =
µ1

Pr

∫
∂Ωp

v3,

(54)
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Figure 4: The computational domain; note that Ω does not include the pillar,
which is shaded in red. The output regions D1, D2 and D3 are also indicated.

for w = (w1, w2, w3) ∈ X, v = (v1, v2, v3) ∈ X, and z = (z1, z2, z3) ∈ X; in
these expressions, i = 1, 2, 3 and j = 1, 2. Here, X = Z ×W , where Z is the
divergence-free subspace of (H1

0 (Ω))2, and H1
0 (Ω) ⊂W ⊂ H1(Ω) is the subspace

of H1(Ω) of functions which vanish on the enclosure roof.
Our problem can then be expressed in the form (4) with b(w, z, v;µ) =

b1(w, v;µ)+b2(w, z, v;µ) (we have used a skew-symmetric form of the nonlinear
convection operator b2(w, z, v;µ) in order to generate certain discrete stability
properties [18]); note that all forms satisfy the “affine” assumption. For our
truth FE space, we choose XN = ZN ×WN of dimension N = 7248, where ZN

denotes a discretely divergence-free P2 space for the velocity (developed from the
P2 − P1 Taylor-Hood velocity-pressure approximation) and WN is a standard
P2 FE space for the temperature. For further details on the formulation of this
problem see [11].

We note that for the computational results for this problem, we consider a
“relative L2(Ω) error bound” version of Algorithm 2 and hence Algorithm 3.
To obtain a benchmark for comparison we first perform a standard (p-type)
POD/Greedy computation: we specify ε = 2 · 10−3 for the target tolerance,
∆N = 3 for the number of POD modes to include at each Greedy iteration,
µ∗ = (6000, 0) for the initial parameter value, and a train sample Ξtrain of size
200. In this case Algorithm 2 terminates for Nmax = Ñmax = 72. Recall that in
the quadratically nonlinear case the POD/Greedy terminates when the nominal
error bound reaches the prescribed tolerance.

We then perform an hp-POD/Greedy computation: we specify ε1tol = 1.2,
ε2tol = 2 · 10−3, N = 45, ∆N = 3, µ̂0

(1) = (6000, 0), and a train sample Ξtrain,(1)

of size 9. In this case Algorithm 2 terminates after generation of M = 45
subdomains with Nmax = 45. The maximum relative RB L2(Ω) error bound
εmax
N,M (over the train samples) over all subdomains for the hp-RB approximation

as well as for the p-type RB approximation are shown in Figure 5(a). As in the
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Figure 5: (a) Convergence: hp-RB (triangles) and p-type RB (circles). (b)
Parameter domain partition: we show the anchor point (a circled white dot)
and the Greedily selected parameters (white dots) in each subdomain; note
that, within a subdomain, parameters are often selected more than once by the
POD/Greedy algorithm.

linear case, the hp approach trades reduced N for increased M . We show the
hp-RB parameter domain partition in Figure 5(b).

In Figure 6 we show for N = 45 the RB output approximations to the
three outputs (53) for three parameter values (Gr, φ) = (4000, 0.05), (Gr, φ) =
(5000, 0.1), and (Gr, φ) = (6000, 0.2). We also indicate the corresponding error
bars [skN,j(µ) −∆k

N,sj
(µ), skN,j(µ) + ∆k

N,sj
(µ)], 1 ≤ k ≤ K, 1 ≤ j ≤ 3, in which

the true result sN k
j must reside. We recall that the RB output error bounds

∆N,sj are obtained as the product of the RB field error bound ∆N and the dual
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Figure 6: The RB outputs sN,1(tk;µ) (red, solid line), sN,2(tk;µ) (blue, solid
line), sN,3(tk;µ) (green, solid line), and associated error bars (dashed lines) as
functions of time for three values of µ.
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norm of the output functional (Eq. (11)).9 We remark that the accuracy of
these hp-RB outputs is comparable with the accuracy of the p-type RB outputs
since the hp-POD/Greedy and p-type POD/Greedy calculations terminate for
the same specified tolerance. Note that time is measured in diffusive units and
hence the final time of 0.16 is sufficient to observe (at these Gr) significant
nonlinear effects.

The standard (p-type) RB method yields a significant Online speedup rela-
tive to the expensive Boussinesq truth FE solves (one truth solve requires 239
seconds); nevertheless, these p-type RB computations are still rather expensive
due to the O(N4) complexity of the RB error bound for quadratically nonlin-
ear problems. The hp-POD/Greedy method of this paper provides a significant
additional speedup in the hp-RB Online stage due to the direct control of Nmax

and hence reduction in N : Online p-type RB calculation of the output and er-
ror bound with N = 72 basis functions requires 6.48 seconds, whereas Online
hp-RB calculation of the output and error bound with M = 45 subdomains and
N = 45 requires only 0.845 seconds. Of course Offline cost and Online storage
are larger for the hp-RB than for the standard RB: the Offline stage requires
about 69 hours for the hp-RB and only about 5.2 hours for the standard RB;
the Online Dataset requires 2.3 Gbytes for the hp-RB and only 481 Mbytes for
the standard RB.

We finally note that the additional splitting step (“insurance”) was invoked
for ten subdomains for the hp-POD/Greedy computation, and the average of
Nmax,Bm , 1 ≤ m ≤M , is 40.1. This suggest that ε1tol in this case was reasonably
well chosen with respect to the target N .

A Proof of Lemma 1

From (16), (18), and (20) we obtain (24) with ca = Qamax2≤q≤Qa
(γqLqa). From

(15), (19), and (21) we obtain (25) with cf = Qfmax1≤q≤Qf
(‖fq‖L2Lqf ).

B Proof of Lemma 2

From (4) with v = uN k(µ) we obtain

1

∆t
m(uN k(µ), uN k(µ)) + a(uN k(µ), uN k(µ);µ)

=
1

∆t
m(uN k−1(µ), uN k(µ)) + f(uN k(µ);µ). (55)

We next recall Young’s inequality AB ≤ (A2/κ + κB2)/2 (for A,B, κ ∈ R).
For the first term on the right we first invoke the Cauchy-Schwarz inequal-
ity and then Young’s inequality for A = m(uN k−1(µ), uN k−1(µ))1/2, B =

9We note that sup
v∈XN

`n(v;µ)

‖v‖L2

=
1

µ1|Dn|
sup
v∈XN

∫
Dn

v

‖v‖L2

≤
1

µ1

√
|Dn|

√√√√∫
Dn

v2∫
Ω v

2
≤

1

µ1

√
|Dn|

.
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m(uN k(µ), uN k(µ))1/2, and κ = 1 to obtain

m(uN k−1(µ), uN k(µ)) ≤ m(uN k−1(µ), uN k−1(µ))1/2m(uN k(µ), uN k(µ))1/2

≤ 1

2

(
m(uN k−1(µ), uN k−1(µ)) +m(uN k(µ), uN k(µ))

)
. (56)

For the second term on the right we first invoke boundedness of f(·;µ) and then
Young’s inequality with A = ‖f(·;µ)‖X′ , B = ‖uN k(µ)‖X , and κ = α(µ) to
obtain

f(uN k(µ);µ) ≤ ‖f(·;µ)‖X′‖uN k(µ)‖X ≤
1

2

(
‖f(·;µ)‖2X′

α(µ)
+α(µ)‖uN k(µ)‖2X

)

≤ 1

2

(
‖f(·;µ)‖2X′

α(µ)
+ a(uN k(µ), uN k(µ);µ)

)
, (57)

where the last step follows from coercivity of a(·, ·;µ). We combine (56) and
(57) with (55), invoke (22), substitute k′ for k, and sum over k′ to obtain (27).

C Proof of Lemma 3

From linearity of (5) we obtain, for 1 ≤ k ≤ K,

1

∆t
m(∆ukN −∆uk−1

N , v) + a(∆ukN , v;µ2)

= f(v;µ1)− f(v;µ2) + a(ukN (µ1), v;µ2)− a(ukN (µ1), v;µ1), ∀v ∈ XN . (58)

Next, from Lemma 1 we obtain

1

∆t
m(∆ukN −∆uk−1

N , v) + a(∆ukN , v;µ2)

= f(v;µ1)− f(v;µ2) + a(ukN (µ1), v;µ2)− a(ukN (µ1), v;µ1)

≤ cf |µ1 − µ2|‖v‖X + ca|µ1 − µ2|‖ukN (µ1)‖X‖v‖X . (59)

For the first term on the right we invoke Young’s inequality for A = cf |µ1−µ2|,
B = ‖v‖X , and κ = α/2 to note that

cf |µ1 − µ2|‖v‖X ≤
1

2

(
2c2f
α
|µ1 − µ2|2 +

α

2
‖v‖2X

)

≤
c2f
α
|µ1 − µ2|2 +

1

4
a(v, v;µ2), (60)

where the second inequality follows from coercivity of a(·, ·;µ2). For the second
term on the right we invoke Young’s inequality for A = ca|µ1 − µ2|‖ukN (µ1)‖X ,
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B = ‖v‖X , and κ = α/2 to note that

ca|µ1 − µ2|‖ukN (µ1)‖X‖v‖X ≤
1

2

(
2c2a
α
|µ1 − µ2|2‖ukN (µ1)‖2X +

α

2
‖v‖2X

)

≤ c2a
α2
|µ1 − µ2|2a(ukN (µ1), ukN (µ1);µ1) +

1

4
a(v, v;µ2), (61)

where the second inequality follows from coercivity of a(·, ·;µ). With (59), (60),
and (61) we obtain for v = ∆ukN ,

m(∆ukN ,∆u
k
N ) +

∆t

2
a(∆ukN ,∆u

k
N ;µ2) ≤ m(∆uk−1

N ,∆ukN )

+
∆t

α2
|µ1 − µ2|2

(
αc2f + c2aa(ukN (µ1), ukN (µ1);µ1)

)
. (62)

For the first term on the right we note by the Cauchy-Schwarz inequality and
Young’s inequality for A = m(∆uk−1

N ,∆uk−1
N )1/2, B = m(∆ukN ,∆u

k
N )1/2, and

κ = 1 that

m(∆uk−1
N ,∆ukN ) ≤ m(∆uk−1

N ,∆uk−1
N )1/2m(∆ukN ,∆u

k
N )1/2

≤ 1

2
m(∆uk−1

N ,∆uk−1
N ) +

1

2
m(∆ukN ,∆u

k
N ). (63)

Hence

m(∆ukN ,∆u
k
N )−m(∆uk−1

N ,∆uk−1
N ) + ∆t a(∆ukN ,∆u

k
N ;µ2)

≤ 2∆t

α2
|µ1 − µ2|2

(
αc2f + c2aa(ukN (µ1), ukN (µ1);µ1)

)
. (64)

We now substitute k′ for k and sum over k′ to obtain

|||∆ukN |||2µ2
≤ 2

α2
|µ1 − µ2|2

(
αc2f t

k + c2a∆t

k∑
k′=1

a(uk
′

N (µ1), uk
′

N (µ1);µ1)
)
. (65)

We finally note that ∆t
∑k
k′=1 a(uk

′

N (µ1), uk
′

N (µ1);µ1) ≤ |||ukN (µ1)|||2µ1
. Hence,

by Lemma 2 we obtain (28) for C̃ given in (29).

D Proof of Lemma 4

From linearity of (5) we obtain, for 1 ≤ k ≤ K,

1

∆t
m(∆ukN −∆uk−1

N , v) + a(∆ukN , v;µ2)

= f(v;µ1)− f(v;µ2) + a(ukN (µ1), v;µ2)− a(ukN (µ1), v;µ1), ∀v ∈ XN . (66)
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We choose v = (∆ukN −∆uk−1
N )/∆t ∈ XN and obtain

1

∆t2
‖∆ukN −∆uk−1

N ‖2L2
+

1

∆t
a(∆ukN ,∆u

k
N −∆uk−1

N ;µ2)

=
1

∆t
f(∆ukN −∆uk−1

N ;µ1)− 1

∆t
f(∆ukN −∆uk−1

N ;µ2)

+
1

∆t
a(ukN (µ1),∆ukN−∆uk−1

N ;µ2)− 1

∆t
a(ukN (µ1),∆ukN−∆uk−1

N ;µ1), ∀v ∈ XN .

(67)

From Lemma 1 we obtain

1

∆t
f(∆ukN −∆uk−1

N ;µ1)− 1

∆t
f(∆ukN −∆uk−1

N ;µ2)

≤ cf
∆t
‖∆ukN −∆uk−1

N ‖L2 |µ1 − µ2| (68)

and

1

∆t
a(ukN (µ1),∆ukN −∆uk−1

N ;µ2)− 1

∆t
a(ukN (µ1),∆ukN −∆uk−1

N ;µ1)

≤ ca
∆t
‖ukN (µ1)‖X‖∆ukN −∆uk−1

N ‖L2 |µ1 − µ2|. (69)

We thus obtain

1

∆t2
‖∆ukN −∆uk−1

N ‖2L2
+

1

∆t
a(∆ukN ,∆u

k
N −∆uk−1

N ;µ2)

≤ cf
∆t
‖∆ukN −∆uk−1

N ‖L2 |µ1 − µ2|

+
ca
∆t
‖ukN (µ1)‖X‖∆ukN −∆uk−1

N ‖L2 |µ1 − µ2|. (70)

We now recall from (16) that a(·, ·;µ) = a1(·, ·) + aII(·, ·;µ). We may thus write

1

∆t2
‖∆ukN −∆uk−1

N ‖2L2
+

1

∆t
a1(∆ukN ,∆u

k
N )

≤ 1

∆t
a1(∆ukN ,∆u

k−1
N ) +

1

∆t
|aII(∆u

k
N ,∆u

k
N −∆uk−1

N ;µ2)|

+
cf
∆t
‖∆ukN −∆uk−1

N ‖L2 |µ1 − µ2|

+
ca
∆t
‖ukN (µ1)‖X‖∆ukN −∆uk−1

N ‖L2 |µ1 − µ2|. (71)

Next, we apply the Cauchy-Schwarz inequality to the first term on the right and
continuity to the second term on the right; we then apply Young’s inequality to
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each term on the right to obtain

1

∆t2
‖∆ukN −∆uk−1

N ‖2L2
+

1

∆t
a1(∆ukN ,∆u

k
N )

≤ 1

2∆t

(
a1(∆ukN ,∆u

k
N ) + a1(∆uk−1

N ,∆uk−1
N )

)
+
γ

2

( 1

3γ∆t2
‖∆ukN −∆uk−1

N ‖2L2 + 3γ‖∆ukN‖2X
)

+
1

2

( 1

3∆t2
‖∆ukN −∆uk−1

N ‖2L2 + 3c2f |µ1 − µ2|2
)

+
1

2

( 1

3∆t2
‖∆ukN −∆uk−1

N ‖2L2 + 3c2a‖ukN (µ1)‖2X |µ1 − µ2|2
)
, (72)

or

1

∆t
‖∆ukN −∆uk−1

N ‖2L2
+ a1(∆ukN ,∆u

k
N )− a1(∆uk−1

N ,∆uk−1
N )

≤ 3γ2∆t‖∆ukN‖2X + 3|µ1 − µ2|2
(
c2f∆t+ c2a∆t‖ukN (µ1)‖2X

)
. (73)

We then substitute k′ for k and sum over k′ to obtain

1

∆t

k∑
k′=1

‖∆uk
′

N −∆uk
′−1
N ‖2L2

+ a1(∆ukN ,∆u
k
N )

≤ 3γ2
k∑

k′=1

∆t‖∆uk
′

N‖2X + 3|µ1 − µ2|2
(
c2f t

k + c2a∆t

k∑
k′=1

‖uk
′

N (µ1)‖2X
)
. (74)

Finally, we first invoke coercivity of a(·, ·;µ), and then Lemmas 2 and 3 to obtain

1

∆t

k∑
k′=1

‖∆uk
′

N −∆uk
′−1
N ‖2L2

+ a1(∆ukN ,∆u
k
N )

≤ 3γ2

α
∆t

k∑
k′=1

a(∆uk
′

N ,∆u
k′

N ;µ2)+
3

α
|µ1−µ2|2

(
αc2f t

k+c2a∆t

k∑
k′=1

a(uk
′

N (µ1), uk
′

N (µ1);µ1)
)

≤ |µ1 − µ2|2
3

α2

(
γ2αC̃2 + tkα2c2f + tkc2a max

µ∈D
‖f(·;µ)‖X′

)
. (75)

The desired result thus follows since a1(∆ukN ,∆u
k
N ) ≥ 0.
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