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Abstract

The Certified Reduced Basis method (herein RB method) is a popular approach for model reduction of
parametrized partial differential equations. In this paper we introduce new techniques that are required
to efficiently implement the Offline “Construction stage” of the RB method on high-performance parallel
supercomputers. This enables us to generate certified RB models for large-scale three-dimensional problems
that can be evaluated on standard workstations and other “thin” computing resources with speedup of many
orders of magnitude compared to the corresponding full order model. We use our implementation to perform
detailed numerical studies for two computationally expensive model problems: a natural convection fluid
flow problem and a “many parameter” heat transfer problem. In the heat transfer problem, we exploit the
computational efficiency of the RB method to perform a detailed study of “snapshot” selection in the Greedy
algorithm, and we also examine statistics of the output sensitivity derivatives to obtain a “global” view of
the relative importance of the parameters.

Keywords: Reduced basis method, a posteriori error bounds, finite element methods, high-performance
computing, Boussinesq equation, heat transfer, sensitivity derivatives

1. Introduction

High-fidelity computational simulation of parametrized partial differential equations (PDEs) is funda-
mentally important in many scientific and engineering contexts. However, classical high-fidelity numerical
discretizations — finite element methods, finite difference methods, spectral methods — are computation-
ally expensive for large-scale problems. This limits their applicability in situations where a PDE needs to
be solved for many different parameters (optimization, inverse problems, multiscale analysis), or in which
real-time evaluation is desirable (control applications, “in situ” design). To address this limitation, a large
body of model reduction literature has emerged [1, 2, 3, 4]. The basic goal in model reduction is to de-
velop a low-dimensional representation that accurately captures the dynamics of a high-fidelity numerical
discretization over a specific parameter regime of interest. One well-established approach to model reduc-
tion of parametrized PDEs is the certified Reduced Basis (RB) method [5, 6, 7, 8, 9]. In the RB method,
a very low-dimensional approximation to the “solution manifold” of a parametrized PDE is constructed,
typically resulting in a reduced order model that achieves orders of magnitude savings in computation time
and memory.

Throughout this paper we shall assume there exists a sufficiently accurate (for our purposes) finite element
discretization of a parametrized PDE, and that we seek to construct a reduced-order model based on this
discretization via the RB method. Employing the standard RB nomenclature, we shall henceforth refer to
the high-fidelity discretization as the “truth” model. It has been well-established [9] that, for a class of PDEs
that satisfy the “affine hypothesis,” the RB method allows rapid and highly-accurate approximation of the
high-fidelity (truth) model and, moreover, incorporates inexpensive a posteriori error bounds that provide a

∗Corresponding author.

Preprint submitted to CMAME December 15, 2010



rigorous measure of the error incurred in the model reduction process. The focus of this paper, however, is
to demonstrate that by exploiting opportunities for parallelism in the RB framework, we can realize the full
potential of the RB methodology for large-scale PDE simulations. The “pay-off” of model reduction clearly
increases in direct proportion to the complexity and expense of the full-fidelity simulation.

The RB framework is naturally separated into an “inexpensive” Online stage and an “expensive” Offline
stage. In the inexpensive Online stage, the reduced-order model and corresponding error bounds can be
evaluated for user-specified input parameters — the cost of the Online calculations are independent of the
truth discretization and hence can be performed very rapidly and with limited computational resources [10].
The Offline stage, on the other hand, corresponds to the construction of the reduced order model. In
this stage we appeal to the truth discretization to develop basis functions that are highly tailored to the
solution manifold, as well as to perform other truth model-dependent preprocessing for subsequent Online
evaluation steps. In this paper we develop a high-performance implementation of the Offline stage of the
RB method. This enables robust treatment of problems with many parameters as well as problems with
extremely expensive truth solves, which are out of reach without the ability to exploit parallel computing
resources. We explore two large-scale model problems in the numerical results section that demonstrate the
effectiveness of our implementation.

1.1. Overview of the RB Method

There are many discussions of the RB method already available in the literature (e.g. [9, 11, 12, 13, 14]),
hence for the sake of brevity we do not reproduce this material here. However, we do need to introduce some
basic notation that will be required in the subsequent sections of this paper. Following the standard RB
method notation [9], we suppose that the system input µ ∈ D ⊂ RP (where D is a bounded set) enters as
a parameter in a PDE which describes the relevant physical phenomena over an appropriate spatial domain
Ω ⊂ Rd, d = 1, 2 or 3. We may consider either steady-state or time-dependent problems; in the time-
dependent case we suppose 0 ≤ t ≤ tf is the time interval of interest. This PDE yields (i) a field variable
over Ω, u(µ) ∈ X(Ω) (where X(Ω) is an appropriate function space), and (ii) a scalar output (or outputs) of
interest, s(µ) ∈ R, which can be expressed as a (say) linear functional of the field variable, s(µ) = `(u(µ)).
Note that the parameter dependence proceeds from the PDE through the field variable and finally to the
engineering output.

We suppose that the parametrized PDE is discretized by finite elements in space, and in the time-
dependent case, by a finite difference scheme in time. We then obtain a high-fidelity finite element approxima-
tion by computing the Galerkin projection over a finite element approximation subspace XN (⊂ X) of large
dimension N . For any µ ∈ D, our truth approximation is given by uN (µ) ∈ XN and sN (µ) = `(uN (µ)) ∈ R.
We note that, given our restriction to µ ∈ D, all solutions of interest necessarily reside on the parametrically-
induced manifold MN ≡ {uN (µ) |µ ∈ D}. We observe that this manifold is relatively low-dimensional and
in many cases of practical interest it can be expected to be smooth. Assuming an RB approximation
space (which we shall call XN (⊂ XN ) where dim(XN ) = N) has been constructed1 we then consider
Galerkin projection over XN to obtain, for any µ ∈ D, the RB solution uN (µ) and consequently the output
sN (µ) = `(uN (µ)). As part of the RB method, we also compute rigorous a posteriori bounds, ∆N (µ) and
∆s
N (µ), for the error in the RB field approximation and the RB output approximation, respectively. Thus

for any µ ∈ D, we have ‖uN (µ)− uN (µ)‖X ≤ ∆N (µ) and |sN (µ)− sN (µ)| ≤ ∆s
N (µ). The existence of these

bounds allows us to claim that our RB approximation is certified.
The rest of this paper is arranged in the following way: in Section 2 we focus on new innovations re-

quired to provide a flexible and extensible implementation of the RB method that can be employed on
high-performance computers. We then exploit this implementation in Section 3 to explore two computa-
tionally intensive problems: a natural convection problem in an enclosed three-dimensional cavity, and a
thermal conduction problem with parametrized thermal conductivities. The former demonstrates robust

1In practice we employ the Greedy algorithm [9, 12] to construct XN , see Algorithm 1 for details. Additionally, in the
time-dependent case, the reduced basis approximation inherits the same temporal discretization as the truth.
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model reduction for a nontrivial nonlinear problem while the latter demonstrates the efficacy of our imple-
mentation for a problem with “many” parameters. In order to gain insight into the complicated parametric
dependencies in the thermal conduction problem, we also use our rapid and accurate RB approximation to
perform a statistical study of parameter selection in the Greedy algorithm and of the parametric sensitivity
of the output. In each case the Offline stage was performed on the TeraGrid supercomputer Ranger at the
Texas Advanced Computing Center (TACC). Finally, in Section 4, we give a few concluding remarks and
comment on potential avenues of future research created by the existence of our open, high-performance RB
simulation framework.

2. High-Performance Implementation of the RB Framework

Our implementation of the RB framework is available as part of the open source C++ parallel finite
element library libMesh [15]. We utilize libMesh’s interfaces to PETSc [16] and SLEPc [17] for sparse
linear algebra and eigenvalue solver functionality, respectively, and we employ existing libMesh functionality
for all the N -dependent operations required by the RB method [9]:

(i) PDE solves at “greedily” selected parameter values,

(ii) Truth eigensolves required by the Successive Constraint Method (SCM) [18],

(iii) Poisson solves for computing the Riesz representations of the residual terms and outputs,

(iv) Inner products over Ω to obtain the data arrays required in the Online stage of the RB algorithm.

The object-oriented organization of the RB code is illustrated in Figure 1. The base class RBBase
implements functionality common across all problem types: it stores the “corners” in RP of the parameter
domain D, the training set Ξtrain ⊂ D, and the set of parameter-independent operators and parameter-
dependent functions from the affine expansion of the PDE. RBBase is extended (via the C++ inheritance
mechanism) in two directions which encapsulate, in a broad sense, the two major classes of systems — (i)
steady, time-dependent, and nonlinear PDE systems and (ii) SCM eigensystems — which must be solved in
the RB method.2

The RBSystem class (left side of the inheritance tree in Figure 1) represents the RB implementation for el-
liptic problems. Through its descendants it also provides support for linear parabolic (TransientRBSystem)
and quadratically-nonlinear parabolic (QNTransientRBSystem) PDEs. These classes inherit from libMesh’s
LinearImplicitSystem class, thereby gaining access to matrix assembly and linear system solver inter-
faces for performing truth finite element solves. Each class provides an appropriate implementation of the
Greedy algorithm; for example, RBSystem provides the standard Greedy algorithm for steady state prob-
lems [12] (see Section 2.2 for details), whereas TransientRBSystem implements the POD(t)-Greedy(µ)
version [19]. The second direction in which RBBase is extended is for the SCM: RBSCMSystem inherits from
libMesh’s EigenSystem class in order to access the library’s SLEPc eigensolver interface, and is respon-
sible for implementing the standard SCM algorithm. QNTransientSCMSystem extends RBSCMSystem to
implement the modified SCM required for quadratically nonlinear time-dependent problems [20]. We also
provide RBEIMSystem, which is an implementation of the Empirical Interpolation Method that enables
efficient RB treatment of non-affine PDEs [21].

2.1. Parallelization Opportunity 1: N -Dependent Operations

We exploit two key opportunities for parallelization in the Offline stage of the certified RB framework.
First, we employ libMesh to parallelize the N -dependent operations of the RB method enumerated in
points (i)–(iv) in the previous section. In addition, libMesh also handles the more “mundane” yet critical
components required in the truth solve, such as the input and parallel partitioning of the computational
mesh, and the output of truth solutions in formats recognized by popular visualization software. libMesh

2We note the following technical detail: RBBase is a template class, hence the two specific instantiations of RBBase shown
in Figure 1, RBBase<LinearImplicitSystem> and RBBase<EigenSystem>, represent independent inheritance branches and
not e.g. a “multiple inheritance” object design.
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Figure 1: Class diagram for rbOOmit. Solid lines with open arrowheads represent C++ inheritance, with
arrows pointing from child to parent class. Dashed lines represent specific instantiations of template classes.
Class names in italics are part of the LibMesh [15] finite element library.

enables us to treat large-scale truth discretizations because it employs domain decomposition with message
passing and thread-based parallelism to accelerate matrix assembly and distribute memory consumption
among multiple processors.

In a practical RB problem we must define an “affine decomposition” a(v, w;µ) =
∑Q
q=1 θq(µ)aq(v, w) of a

parametrized PDE operator a(·, ·; ·) : XN ×XN ×D → R, where the aq(·, ·) : XN ×XN → R are parameter-
independent operators and the θq(·) : D → R are parameter-dependent functions. To illustrate the way in
which libMesh facilitates parallelization of the RB method, we provide example assembly code for a simple
parameter-independent operator — the Laplace operator on a subdomain of Ω — in Listing 1. The assembly
function is passed a FEMContext reference which encapsulates all of the necessary element-specific data,
and a reference to the RBSystem object currently being assembled. The design of the FEMContext object
allows the library to easily implement thread-based parallelism in the finite element assembly procedures:
element-specific data structures can be duplicated as threads are spawned, without any danger of accidentally
introducing shared variable lock conditions. An additional level of domain-decomposition parallelism is also
obtained as the assemble laplacian() function is called on processor p only for the local subset of finite
elements “owned” by processor p.

Examples of the finite element data contained in the FEMContext object are seen in lines 10, 14, 18, and
21 of Listing 1, where references to element-specific quadrature rule data, shape function gradient values,
and degree of freedom counts are obtained from the context object, which is called “c” in the code. These
data allow the assembly loop which follows in lines 23–26 to be element-generic, that is, to work unchanged
on any type of geometric finite element. In the body of the loop, on line 26 of Listing 1, the element
matrix contribution due to the Laplace operator is accumulated in c.elem jacobian (this contribution
is subsequently scaled, in a separate part of the code, by the parameter-dependent function value). The
Laplacian example considered here is evidently very simple, but the general structure in Listing 1 can be
easily extended to handle much more complicated operators.

As mentioned previously, libMesh also leverages the parallel preconditioners and iterative solvers from
PETSc and SLEPc to solve large-scale finite element systems efficiently. While Krylov subspace iterative
solvers are sufficiently general and capable of handling the systems which must be solved in the RB method,
in some cases it can be advantageous to employ a direct solver. For example, a large number of Poisson
problems with fixed matrix and multiple right-hand side vectors need to be solved during the Offline stage
to compute terms required for constructing the RB error bound [9]. This is a prototypical scenario in which
direct solvers can outperform their iterative cousins. We employ the parallel sparse direct solver MUMPS [22]
for this purpose, and this predictably leads to significant speedup. For sufficiently large problems, however,
direct solvers may still become infeasible due to their large memory footprint.
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1 void assemble_laplacian(FEMContext &c, System& system)
2 {
3 if (c.elem->subdomain_id() == 0)
4 {
5 // Get index of "u" variable from System
6 RBSystem& rb_system = libmesh_cast_ref<RBSystem&>(system);
7 const unsigned int u_var = rb_system.u_var;
8

9 // Reference to vector of quadrature rule data
10 const std::vector<Real> &JxW =
11 c.element_fe_var[u_var]->get_JxW();
12

13 // The velocity shape function gradients at q. pts
14 const std::vector<std::vector<RealGradient> > &dphi =
15 c.element_fe_var[u_var]->get_dphi();
16

17 // The number of local degrees of freedom in each variable
18 const unsigned int n_u_dofs = c.dof_indices_var[u_var].size();
19

20 // Now we will build the affine operator
21 unsigned int n_qpoints = c.element_qrule->n_points();
22

23 for (unsigned int qp=0; qp != n_qpoints; qp++)
24 for (unsigned int i=0; i != n_u_dofs; i++)
25 for (unsigned int j=0; j != n_u_dofs; j++)
26 c.elem_jacobian(i,j) += JxW[qp] * dphi[j][qp]*dphi[i][qp];
27 }
28 }

Listing 1: Sample libMesh [15] matrix assembly code demonstrating several techniques which enable par-
allelization in the Offline stage of the RB framework.

2.2. Parallelization Opportunity 2: The Greedy Algorithm

The other opportunity for parallelization is in the Greedy algorithm (see Algorithm 1), which is employed
to select the basis function “snapshots” of MN , which we denote by {ζi, . . . , ζN}. The Greedy algorithm
entails evaluation of the RB approximation and associated error bounds on the entire set of training points,
Ξtrain. There are two key computational tasks in the Greedy algorithm that, for brevity, we encapsulate
here in subroutines Construction and Evaluation. The Construction stage takes the current set
of basis functions, {ζi, . . . , ζN}, as input and develops the Online Dataset(N) needed to evaluate the RB
approximation and associated error bounds:

[Online Dataset(N)] = Construction({ζn}n=1,...,N ). (1)

The Evaluation subroutine takes a discrete parameter set Ξ ⊂ D as input and returns µ∗ = arg maxµ∈Ξ ∆N (µ),
and err = ∆N (µ∗):

[µ∗,err] = Evaluation(Ξ; Online Dataset(N)), (2)

Given that the Evaluation computations are very inexpensive, we are usually able to utilize relatively
large training sets and obtain good “coverage” of D. Nevertheless, there are two situations in which the
error bound sampling on Ξtrain tends to dominate the computational cost of the Offline stage. The first is
problems with many parameters, in which — due to the “curse of dimensionality” — we need to choose very
large training sets in order to obtain a reasonable coverage of the parameter domain. The other situation is
quadratically nonlinear problems in which error bound evaluation requires O(N4) operations [23, 24]. In this
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scenario, when N � 1, the RB solves required by the “arg max” operation in (2) may require a significant
proportion of the overall runtime of the Offline stage.

Algorithm 1 Greedy Algorithm.

1: specify Ξtrain ⊂ D of size ntrain and tolerance ε.
2: select µ∗ ∈ D (arbitrary), set N = 0 and X0 = {0}.
3: while err > ε do
4: ζN+1 = (I −ΠXN

)uN (µ∗) (normalized);
5: XN ← XN ⊕ span(ζN+1);
6: N ← N + 1;
7: [Online Dataset(N)] = Construction({ζi}i=1,...,N ) (update);
8: [µ∗,err] = Evaluation (Ξtrain,Online Dataset(N));
9: end while

10: set Nmax ← N .

Fortunately, we can employ an “embarrassingly parallel” implementation of the “arg max” operation.
We initialize by partitioning the training set Ξtrain into disjoint subsets {Pi, i = 1, . . . , nproc}, where nproc

denotes the number of processors. The parallel algorithm then proceeds with a local “arg max” operation
performed simultaneously on all processors. Finally, an inexpensive parallel “arg max” is performed for the
nproc local “winning” candidate parameters to find the global maximizer from Ξtrain. This simple strategy
reduces the computation time for the ntrain RB solves by a factor of nproc, and (as we demonstrate in
Section 3) can lead to very significant Offline speedup.

3. Numerical Results

We now consider two computationally expensive example problems that illustrate the RB techniques
discussed above: a nonlinear unsteady Boussinesq problem and a “many parameter” thermal conduction
problem. We perform a detailed numerical study of the behavior of the Greedy algorithm for the thermal
conduction problem, and we also exploit our reduced basis approximation to perform a statistical study of
sensitivity derivatives. All Offline computations were performed on the Ranger supercomputer (located at
the Texas Advanced Computing Center), which has in total 62,976 cores, 123TB of memory, and a theoretical
peak performance of 579 TFLOPs. We generate reduced order models with rigorous error bounds that can
be evaluated on a standard desktop or laptop computer in real-time or near real-time.

3.1. Unsteady Boussinesq Equations

We first consider a three-dimensional version of the unsteady natural convection problem from [24]. The
nondimensional, coupled conservation of momentum, energy, and mass equations for this problem are:

∂V

∂t
+

1

2
√

Gr Pr

(
V · ∇V +∇ · V V

)
+
√

Gr Pr∇P

−∇2V +
√

Gr PrT ĝ = 0 (3)

∂T

∂t
+

1

2
√

Gr Pr

(
V · ∇T +∇ · TV

)
− 1

Pr
∇2T = 0 (4)

∇ · V = 0 (5)

where V ≡ (V1, V2, V3) is the nondimensional velocity vector, P is the nondimensional pressure, T is the
nondimensional temperature, and

ĝ ≡ (− sinφ, 0,− cosφ)
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is a unit vector in the direction of gravity. Gr is the Grashof number, a measure of the strength of buoyant
effects relative to thermal diffusion, and Pr = 0.71 is the Prandtl number (we assume the fluid is air).
Additional details of the nondimensionalization can be found in [24].

The nondimensional domain is Ω = (0, 5)3 \P where P is the pillar (2.4, 2.6)× (1.5, 3.5)× (0, 1). We solve
for the field variables V , P , and T throughout Ω. The “roof” of the cavity is maintained at temperature
T = 0, the sides and base of the cavity are perfectly thermally insulated, and the top and sides of the pillar
are subject to a uniform heat flux of magnitude Gr. We impose no-slip velocity conditions on all boundaries.

The truth weak formulation for (3)–(5) requires only minor modifications from the two-dimensional case
in [24], hence we omit it here for the sake of brevity.3 We consider the time interval t ∈ [0, 0.16], and employ a
Crank-Nicolson temporal discretization with K = 100 timesteps. The three-dimensional finite element mesh
is composed of quadratic tetrahedral elements and has 71,279 nodes and 50,574 elements; cutaway views
showing the internal details of the tetrahedralization are given in Figure 2. The total number of degrees of
freedom for the velocity, temperature and pressure is N = 294,502. The RB and SCM implementations in
this case were based on the classes QNTransientRBSystem and QNTransientSCMSystem, respectively.

(a) x = 2.5 (b) y = 2.5

Figure 2: x (2a) and y (2b) interior cutaway views of the mesh used in the three-dimensional unsteady
Boussinesq calculations. The output regions, which sit just above the heated “pillar,” are meshed exactly.
The pillar itself is a rectangular cavity at the base of the domain and is not meshed. The mesh is composed
of quadratic tetrahedral elements and has 71,279 nodes and 50,574 elements.

We consider a two-tuple parameter µ ≡ (µ1, µ2) ≡ (Gr, φ) ∈ D ≡ [4000, 6000] × [0, 0.2]. Our goal is
to study the parametric dependence of the temperature in regions near the top of the heated pillar in the
presence of natural convection. Therefore, we consider the following L2(Ω)-bounded functionals of T

sn(t;µ) = `n(T (t;µ), µ) =
1

µ1|Dn|

∫
Dn

T (t;µ) ; (6)

as outputs, where D1 = [2.2, 2.4]× [1.5, 3.5]× [1, 1.1], D2 = [2.4, 2.6]× [1.5, 3.5]× [1, 1.1], and D3 = [2.6, 2.8]×
[1.5, 3.5]× [1, 1.1] are three small rectangular prisms above the pillar. We denote the RB approximations to
the outputs from (6) as sN,n(t;µ), n = 1, 2, 3. A cross-section of the domain geometry and output regions
is given in Figure 3, cross-sections of the truth solution at t = 0.16 for (Gr, φ) = (6000, 0.2) are shown in
Figure 4.

3Note that we employ skew-symmetric convection operators in (3) and (4) to recover discrete stability properties and simplify
RB error bound derivation.
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Figure 3: Cross-section at y = 2.5 of the computational domain; note that Ω does not include the pillar
which is shaded in red. Cross-sections of the output regions D1, D2 and D3 are also indicated.

We construct a (primal-only) RB space via the POD(t)-Greedy(µ) algorithm.4 We specify ε = 9× 10−4

for the target tolerance and δN = 3 for the number of POD modes to include at each greedy iteration; we
further specify a 32× 32 tensor product train sample Ξtrain of uniformly spaced points in D. The tolerance
is satisfied for Nmax = 90 and the Greedy convergence is shown in Figure 5. Note that in the quadratically
nonlinear case we report a nominal error bound during the POD(t)-Greedy(µ) since the SCM cannot be
performed until after the RB space has been generated [20]. Nevertheless, this does not compromise the
rigor of the RB error bounds in the Online stage. All Offline calculations are performed on 128 processors on
Ranger. The total wall time required for the entire Offline stage, including the SCM, is significant: about 42
hours. The “embarrassingly parallel” solves over Ξtrain during the greedy algorithm require approximately
24 total minutes in the calculation — a small percentage of the overall Offline runtime. It is important to
note, however, that had these solves not been parallelized in the manner discussed in this paper, the total
wall-clock time for this stage of the calculation would have been approximately 128 × 24 minutes, or just
over 51 hours.

In Figure 6, we show RB output approximations and corresponding RB error bounds obtained with
N = 90 to the sn(t;µ) for parameter values (Gr, φ) = (4000, 0), (5000, 0.1), and (6000, 0.2). We note that, as
expected, the “left” and “right” outputs (s1 and s3, respectively) coincide when φ = 0 and their separation
increases as φ increases. The Online computation time with N = 90 is 20.6 seconds on an AMD Opteron
2382 processor. Most of this time is due to the O(N4) complexity of the error bounds in the quadratically
nonlinear case. Nevertheless, this still represents a speedup factor of approximately 63 with respect to a
single truth solve on Ranger, which requires 21.7 minutes on 128 processors.

3.2. Transient Thermal Conduction

We next consider a “many parameter” problem, which is challenging from the point of view of model
reduction due to the “curse of dimensionality”. We consider transient thermal conduction in a three–
dimensional “Swiss cheese” configuration. This is a generalization of the steady-state “thermal block”
problem posed on the unit square in two spatial dimensions in [25]; here we consider a time-dependent
formulation, a more complicated domain Ω and a much more expensive truth discretization. The domain Ω
is given by the unit cube [0, 1]3 \ S, where S is a lattice of 27 spheres of radius 1/5 and centers {0, 1/2, 1} ×
{0, 1/2, 1} × {0, 1/2, 1}. We subdivide Ω into 27 subdomains, Ω = ∪26

j=0Ωj , the Ωj are shown in Figure 7a,
and are numbered sequentially (in a standard “structured” grid pattern) starting with Ω0 at the origin and

4A primal-dual formulation is not appealing in this case since (i) the beneficial effect on output error bounds would be
limited due to exponential error bound growth, and (ii) we would need a dual system for each output.

8



(a) x = 2.5 (b) y = 2.5

Figure 4: x (4a) and y (4b) interior cutplane views of the truth solution for (Gr, φ) = (6000, 0.2). Color
contours show the temperature field and the overlaid velocity vectors indicate the circulatory nature of the
flow.

then proceeding with x-axis aligned rows, advancing in the y-direction until one layer is complete, followed
by the same pattern for the middle and top layers. In particular, the bottom “corners” of the domain
correspond to Ω0, Ω2, Ω6, and Ω8, while the central subdomain is Ω13.

The governing equations are most easily described in weak form: find u(t;µ) ∈ X for 0 ≤ t ≤ tf = 1 such
that ∫

Ω

∂u

∂t
v +

26∑
j=1

µj

∫
Ωj

∇u · ∇v +

∫
Ω0

∇u · ∇v =

∫
Γb

v, ∀v ∈ X, (7)

where µj is the thermal conductivity of region Ωj relative to the thermal conductivity of region Ω0, X ≡ {v ∈
H1(Ω) | v|Γt

= 0}, Γb is the bottom boundary “z = 0” (on which we impose inhomogeneous flux boundary
conditions), and Γt is the top boundary “z = 1” (on which we impose zero Dirichlet conditions). We
impose homogeneous natural (zero) flux conditions on all other boundaries. We choose P = 26 parameters,
µj , 1 ≤ j ≤ 26, and specify the parameter domain D = [0.5, 2]26. We consider one output,

s(t;µ) = `(u(t;µ)) =
1

|Ω0|

∫
Ω0

u(t;µ),

the average temperature over Ω0, where Ω0 is the intersection of Ω with the cube [0, 1/4]3.
We pursue a primal-dual approach for this linear time-invariant (LTI) parabolic problem, where the dual

problem runs “backwards” in time [11]. The weak formulation for the dual problem is: find z(t;µ) ∈ X for
0 ≤ t ≤ tf such that

−
∫

Ω

v
∂z

∂t
+

26∑
j=1

µj

∫
Ωj

∇v · ∇z +

∫
Ω0

∇v · ∇z = 0, ∀v ∈ X, (8)

with
∫

Ω
v z(tf ) = `(v). We select a backward Euler temporal discretization with K = 100 time levels for

both the primal and dual problems and employ a truth finite element approximation space with N = 241,520
degrees of freedom. Both the primal and dual systems are implemented via the TransientRBSystem class
discussed in Section 2, and the SCM is not required here due to the simple “parametrically coercive” [9]
structure of (7) and (8). In Figure 8 we show the primal and dual truth solutions at t = 1 and t = 0,
respectively, for the parameter value

µ = (2, 2, 2, 2, 0.5, 2, 0.5, 0.5, 2, 2, 2, 2, 2, 2, 2, 2, 0.5, 2, 2, 2, 2, 2, 2, 2, 2, 2). (9)
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Figure 5: Greedy convergence for the 3D Boussinesq pillar.

This parameter specifies the minimum thermal conductivity in Ω8 and the adjacent subdomains Ω5, Ω7, and
Ω17, therefore we observe a “hot corner” in Figure 8a.

We employ the POD(t)-Greedy(µ) for both the primal and dual problems and develop an RB space with
N = 100 in each case. To investigate the behavior of the Greedy in this “many parameter” problem, we
perform the Offline stage three times with log-randomly generated training sets of size ntrain = 102, 104, and
106. The Offline burden due to the expensive truth and (in the ntrain = 106 case) large ntrain is considerable,
and both forms of parallelization from Sections 2.1 and 2.2 are crucial. Here we used 512 processors of
Ranger for the Offline computations, and the total Offline wall-clock time in the ntrain = 106 case was
approximately 31 hours. The time spent evaluating RB error bounds for the ntrain = 106 calculation was
roughly an hour (per processor). The embarrassingly parallel “arg max” operation discussed in Section 2.2
is therefore clearly essential, and in this case saved over 500 hours of computation time compared to an
equivalent serial algorithm.

In Figure 9 we show the (normalized) POD(t)-Greedy(µ) convergence,

εN ≡
∆K
N (µ∗)

‖uN (tK ;µ∗)‖L2(Ω)
,

where ∆K
N (µ∗) denotes the L2(Ω)-norm RB error bound at time level K, for the primal RB space (the dual

convergence plot is analogous and hence is omitted) with the three choices of ntrain. We observe that the
POD(t)-Greedy(µ) convergence reported in the ntrain = 102 case is overly optimistic due to the coarseness
of the training set — here Ξtrain is a poor surrogate for D. However, the ntrain = 104 and 106 cases agree
quite well, and this suggests that these larger training sets provide a reasonable surrogate for D. Of course,
even the ntrain = 106 training set is extremely sparse in the 26-dimensional parameter domain (e.g. a tensor
product grid with only two points in each parameter direction would have 226 ≈ 6.7 × 107 points) but the
POD(t)-Greedy(µ) nevertheless performs well due to the highly smooth “parametrically coercive” [9] nature
of this problem.

We now proceed to the Online stage. In order to test the accuracy of the primal-dual RB approximation,
we perform RB solves on a 5000 point log-random test set, Ξtest, for the RB spaces generated by the
ntrain = 102 and ntrain = 106 training sets. We compute the maximum relative output error bound over
Ξtest, ∆s,rel

max(Ξtest), defined as

∆s,rel
max(Ξtest) ≡ max

µ∈Ξtest

∆s
N (tK ;µ)

sN (tK ;µ)−∆s
N (tK ;µ)

, (10)
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N ∆s,rel
max(Ξtest) Online time (seconds)

ntrain = 102 ntrain = 106

25 1.13× 10−1 1.16× 10−1 3.48× 10−2

50 2.73× 10−2 2.44× 10−2 1.01× 10−1

75 1.03× 10−2 1.05× 10−2 2.10× 10−1

100 5.22× 10−3 4.34× 10−3 2.74× 10−1

Table 1: Relative output error bounds over the test set Ξtest containing 5000 log-randomly selected points
and corresponding Online evaluation timings.

where ∆s
N (tK ;µ) (resp. sN (tK ;µ)) denotes the primal-dual output bound (resp. dual-corrected RB output) at

the final time, tK(≡ tf ). Note that the denominator in (10) is a lower-bound for the truth output sN (tK ;µ).
In Table 1 we present results for N = 25, 50, 75, and 100 along with corresponding Online computation
times for a single primal-dual RB solve.5 The data clearly indicate the trade-off between RB accuracy and
Online cost. We note from Table 1 that for the ntrain = 106 primal-dual RB spaces with N = 100 we obtain
an Online output approximation with relative error bound less than 0.5% in 0.274 seconds — compared to
approximately 200 seconds for a truth solve on 512 processors of Ranger.

Statistical analysis of the Greedy algorithm

The data generated during the primal and dual basis training procedures for this problem provide a rich
dataset and therefore it is instructive to examine the distribution of the parameter values selected by the
Greedy algorithm in the high-dimensional space D. We first consider the primal POD(t)-Greedy(µ) calcu-
lation with ntrain = 106 (recall that Ξtrain is log-uniform randomly distributed) and we generate individual
histograms for each of the 26 parameters, µj , 1 ≤ j ≤ 26, based on the 100 greedily-selected µ values. We
specify nbins equally-sized bins within the range [µmin, µmax] = [0.5, 2] and let µj(i), 1 ≤ i ≤ nbins denote the
number of occurrences of µj within bin i. To simplify the presentation we then generate a histogram for the
“composite” variable 〈µ〉,

〈µ〉(i) ≡ 1

26

26∑
j=1

µj(i) 1 ≤ i ≤ nbins. (11)

This composite histogram for nbins = 10 is given in Figure 10, where it is compared to a histogram for a
log-uniform random sample of data points over the same parameter range. The greedily-selected parameter
values are biased towards the endpoints of the µ domain relative to the log-uniform random sample. The
tendency of the Greedy algorithm to select parameter values near the endpoints appears analogous to the
endpoint clustering seen in classical interpolation theory, for example the optimal approximation properties
provided by Chebyshev points in one dimension [27].

In addition to the statistical distribution of the µ values, it is also instructive to look at the different
spatial configurations of the parameters selected by the greedy algorithm, in particular the jumps in thermal
diffusivity between adjacent subregions. We define the average jump for a given µ vector as

〈δµ〉 ≡ 1

|I|
∑

(i,j)∈I

|µi − µj | (12)

where I is the set of all ordered pairs (i, j) for which i < j and regions Ωi and Ωj share a common surface.
For the 3× 3× 3 configuration considered in the “Swiss cheese” problem (see Figure 7a) there are 54 unique
ordered pairs in I. A histogram of 〈δµ〉 values computed for the ntrain = 106 case is given in Figure 11,

5Computation times are averaged over Ξtest and are from an AMD Opteron 2382 processor.
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where it is compared to the jumps computed for a large log-uniform random sample of data. The jumps in
the greedily-selected dataset are, on average, larger than those from the log-uniform random sample. This
suggests that the greedy algorithm detects higher error in µ configurations with larger diffusivity jumps —
which in some sense are “higher frequency” modes — thereby preferentially selecting them for inclusion in
the reduced basis.

Sensitivity derivative analysis

We have demonstrated that our primal-dual RB method yields a very fast and accurate output approxima-
tion for the “Swiss Cheese” problem. Our goal in this final subsection is to demonstrate that the primal-dual
RB approximation can be “recycled” in order to provide useful sensitivity derivative information at a fraction
of the computational cost of the full-order model.6 Sensitivity derivatives are crucial in many computational
engineering contexts, including control, optimization, parameter estimation and uncertainty quantification
[28, 29, 30]. In the present study we exploit the RB method to perform a statistical analysis of the sensi-
tivity derivatives from a large parameter sample to gain a “global” view of the relative importance of the
parameters.

We first sketch the derivation of the sensitivity formulation for this problem. Working with the continuous-
time weak formulation for the sake of clarity, we note that∫

Ω

∂

∂t

∂u

∂µp
v +

26∑
j=1

µj

∫
Ωj

∇ ∂u

∂µp
· ∇v +

∫
Ω0

∇ ∂u

∂µp
· ∇v = −

∫
Ωp

∇u · ∇v, ∀v ∈ X, (13)

for p = 1, . . . , 26. Then, from (8) and (13) we obtain∫ t

0

(
−
∫

Ωp

∇u · ∇z

)
dt =

∫ t

0

∫
Ω

∂

∂t

∂u

∂µp
z +

26∑
j=1

µj

∫
Ωj

∇ ∂u

∂µp
· ∇z +

∫
Ω0

∇ ∂u

∂µp
· ∇z

 dt =
∂s

∂µp
(t;µ).

(14)
This relationship carries over directly to our fully-discrete truth finite element formulation, so that we obtain:

∂sN

∂µp
(t`;µ) =

∑̀
k=1

∆t

(
−
∫

Ωp

∇uN (tk;µ) · ∇zN (tK−`+k;µ)

)
. (15)

In the context of RB sensitivity derivatives, however, this relationship is only approximate since we employ a
Galerkin method and the primal and dual RB spaces do not coincide. Also, we employ Lagrange RB spaces

here which are targeted at uN and zN , not ∂uN

∂µp
and ∂zN

∂µp
, hence even if the RB residuals are small it is

not clear that the primal-dual RB approximation will lead to good sensitivity approximations.7 Hence, our
first task is to determine whether the RB approximation developed for this problem, which is very effective
for output approximation, is also satisfactory for sensitivity derivative approximation. We define our RB

approximation to ∂sN

∂µp
(t`;µ) for p = 1, . . . , P as,

JpN (t`;µ) ≡
∑̀
k=1

∆t

(
−
∫

Ωp

∇uN (tk;µ) · ∇zN (tK−`+k;µ)

)
, (16)

and set JN (t`;µ) ≡ (J1
N (t`;µ), . . . , J26

N (t`;µ))T ∈ R26. For convenience, we also denote JN (t`;µ) ≡
(∂s

N

∂µ1
(t`;µ), . . . , ∂s

N

∂µ26
(t`;µ))T .

6We note that direct and finite-difference approximations for sensitivity approximations both require O(P ) forward solves.
Since we have P = 26 parameters here, dual-based sensitivity calculations are certainly preferable.

7To mitigate this effect we could enrich our RB space with derivative information to obtain a Hermite RB space [31], but
we do not consider this here.
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We examine the accuracy of the RB sensitivity derivative approximation using the ntrain = 106 primal and
dual RB spaces, with N = 100. We generate a second test set, Ξtest

2 , of 30 randomly selected parameters in
D on which to compare JN and JN ; the sample set is necessarily relatively small due to the computational
expense of the truth calculations. We note that the RB sensitivity approximations are obtained at very
modest computational cost: each truth sensitivity calculation requires 663 seconds on 512 processors of
Ranger (which includes a primal and dual truth solve and evaluation of (15) for ` = 1, . . . ,K), whereas the
corresponding RB calculation requires only 2.3 seconds on a single processor.

We consider two error metrics in our comparison: the mean relative error in the RB sensitivity derivatives

EJ ≡
1

K |Ξtest
2 |

∑
µi∈Ξtest

2

K∑
k=1

‖JN (tk;µi)− JN (tk;µi)‖2
‖JN (tk;µi)‖2

,

and the mean error in the normalized RB sensitivity derivatives:

ÊJ ≡
1

K |Ξtest
2 |

∑
µi∈Ξtest

2

K∑
k=1

‖ ̂JN (tk;µi)− ̂JN (tk;µi)‖2,

where ̂JN (tk;µ) ≡ JN (tk;µ)/‖JN (tk;µ)‖2, ̂JN (tk;µ) ≡ JN (tk;µ))/‖JN (tk;µ)‖2 and ‖ · ‖2 denotes the

discrete `2 norm. Our test calculations yielded EJ = 0.33 and ÊJ = 0.015. This indicates that our RB
sensitivity approximation does not capture the truth sensitivities accurately, but it does reproduce the
normalized sensitivities very well — to within 2%. We would have to enrich our RB spaces further to reduce
the error in EJ , but in the present context we are in fact primarily interested in the normalized sensitivity

derivatives since the components of ĴN indicate the relative sensitivity of the output to the parameters.

Hence, we exploit the fact that we have a cheap and accurate RB approximation, ĴN ≈ ĴN , to perform a
statistical analysis of the normalized sensitivities in order to obtain a “global” view of the relative importance
of the parameters. We compute sensitivity derivatives for a sample of 10,000 parameters in D and we show

the mean, 〈ĴN (tk)〉, and standard deviation, σ(ĴN (tk)), at t = 0.05, t = 0.25 and t = 1 in Figures 12 and 13.
All components of the mean sensitivity derivatives in Figure 12 are negative, which is consistent with

the fact that an increase in thermal conductivity leads to a decrease in output magnitude. We see from
Figure 12a that at early times only 7 of the 26 parameters have a significant effect on the output, and that
the output is most sensitive to parameters µ1, µ3, µ4 and µ9, which determine the conductivities in the
regions adjacent to Ω0. Figures 12b and 12c, however, show that at later times, once heat has diffused
through the whole domain, the output sensitivity to parameters in subdomains further from Ω0 becomes
more significant and the sensitivities are overall much closer in magnitude. As steady state is approached,
we see from Figure 12c that the output is most sensitive to µ13; this is because subdomain 13 is the central
cube in Ω and has the largest volume (see Figure 7a). Finally, we note that over our sample set the mean

and standard deviation of Ĵ2
N , Ĵ

5
N , Ĵ

6
N , Ĵ

7
N and Ĵ8

N are small over the whole time interval. This suggests that
µ2, µ5, µ6, µ7 and µ8 would be the primary candidates to be eliminated from the problem if we sought to
reduce model complexity. These parameters correspond to the five subdomains furthest away from Ω0 in
the bottom “layer” of Ω, so it is not surprising that they have relatively little impact on the output.

4. Conclusions

The certified Reduced Basis method provides a computational framework for the development of accurate
reduced order approximations with rigorous error bounds for parametrized PDEs. However, the framework
is quite elaborate and contains a number of subcomponents in both the Offline and Online stages. We
have developed a high-performance object-oriented implementation of the certified Reduced Basis method
that is flexible, extensible, efficient and user-friendly. There are many other extensions to the RB method
that have not been discussed in detail here. Two notable examples, which are in fact provided in the RB
extension to libMesh, are the Empirical Interpolation Method [21] for efficient treatment of non-affine
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parametrized PDEs, and the hp-RB method [32, 33] which adaptively subdivides D in order to develop a
family of “localized” RB spaces that lead to acceleration of the Online stage.

We demonstrated our RB implementation on two computationally expensive problems — a transient
Boussinesq problem and a transient thermal conduction problem. In each case we demonstrated that our
RB approximation provides a very large speedup and, equally importantly, a vast reduction in hardware
requirements. We performed a detailed study of the thermal conduction problem because it is an archetypal
example of a “many parameter” model reduction problem. We examined the parameter selection behavior
of the Greedy algorithm, and we also gained interesting insights into the non-trivial “global” parametric
sensitivities by leveraging the rapid response of the primal-dual RB sensitivity approximation to perform a
statistical analysis on a large sample set. These numerical examples demonstrate that our high-performance
implementation of the RB method enables efficient analysis of large-scale parametrized PDEs in real-time
and many-query contexts, and therefore presents new opportunities for robust reduced order modeling in a
range of different application areas.

A key goal of our future work is to employ Online RB approximations in deployed contexts in which
we interface PDE-based models with experimental data in real-time. This could enable us to apply high-
fidelity, three-dimensional PDE models in areas such as non-destructive testing, real-time control, or in situ
parameter estimation, which are out of reach with classical PDE discretizations.
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Figure 6: The RB outputs sN,1(tk;µ) (blue N), sN,2(tk;µ) (red ©), sN,3(tk;µ) (black ×), and associated
error bounds (solid lines) as functions of time for three values of µ.
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(a) (b)

Figure 7: Subdomains (7a) for the “Swiss cheese” problem; each subdomain is associated with a distinct
parametrized thermal conductivity. Interior cutaway view (7b) of the “Swiss cheese” mesh which is composed
of linear tetrahedra and has 32,307 vertices and 168,926 elements. A once-uniformly-refined version of this
grid which was used for the “truth” calculations has 241,520 vertices and 1,351,408 elements. All grids used
in this work were created with the Gmsh [26] mesh generator.

(a) (b)

Figure 8: Primal (8a) and dual (8b) truth solutions at t = 1 and t = 0, respectively, for the parameter in
(9).
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Figure 9: Greedy convergence for the primal basis for three different choices of ntrain.
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(b) Log-uniform random

Figure 10: Histograms of averaged greedy-selected (10a) and log-uniform randomly selected (10b) parameter
values for the “Swiss cheese” problem with ntrain = 106. The log-uniform histogram was created from a
large set of sample data points and scaled to match the averaged greedy-selected 〈µ〉 values. The bias of the
greedy-selected values towards the endpoints 0.5 and 2 of the parameter domain relative to the log-uniform
sample is evident.
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Figure 11: Histograms of average jumps 〈δµ〉 from (12) in spatially-adjacent greedy-selected (11a) and log-
uniform randomly selected (11b) parameter values for the “Swiss cheese” problem with ntrain = 106. The
log-uniform histogram was created from a large set of sample data points and scaled to match the averaged
greedy-selected 〈δµ〉 values.
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(a) tk = 0.05

-0.5

-0.4

-0.3

-0.2

-0.1

0

1 7 13 19 26

〈J
N

 / 
||J

N
|| 2

〉

(b) tk = 0.25
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(c) tk = 1.0

Figure 12: 〈ĴN (tk)〉 for a sample of 10,000 random parameters in D at tk = 0.05 (12a), tk = 0.25 (12b), and
tk = 1 (12c).
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(a) tk = 0.05
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(b) tk = 0.25
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(c) tk = 1.0

Figure 13: σ(ĴN (tk)) for a sample of 10,000 random parameters in D at tk = 0.05 (13a), tk = 0.25 (13b),
and tk = 1 (13c).
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