
High-Fidelity Real-Time Simulation on Deployed Platforms

D.B.P. Huynha, D.J. Knezevica, J.W. Petersonb, A.T. Pateraa

aDepartment of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
bTexas Advanced Computing Center, The University of Texas at Austin, Austin, TX 78758-4497

Abstract

We present a certified reduced basis method for high–fidelity real-time solution of parametrized partial differ-
ential equations on deployed platforms. Applications include in situ parameter estimation, adaptive design and
control, interactive synthesis and visualization, and individuated product specification. We emphasize a new hier-
archical architecture particularly well suited to the reduced basis computational paradigm: the expensive Offline
stage is conducted pre–deployment on a parallel supercomputer (in our examples, the TeraGrid machine Ranger);
the inexpensive Online stage is conducted “in the field” on ubiquitous thin/inexpensive platforms such as laptops,
tablets, smartphones (in our examples, the Nexus One Android–based phone), or embedded chips. We illustrate
our approach with three examples: a two–dimensional Helmholtz acoustics “horn” problem; a three–dimensional
transient heat conduction “Swiss Cheese” problem; and a three–dimensional unsteady incompressible Navier-
Stokes low–Reynolds–number “eddy–promoter” problem.

Keywords:
Reduced basis method, a posteriori error bounds, parametrized partial differential equations, high-performance
computing, deployed platforms, real-time computing

1. Introduction

Many engineering applications require high-fidelity
real-time simulation on deployed platforms “in the
field.” Examples include in situ parameter estimation
and identification procedures, embedded adaptive de-
sign and control systems, virtual reality/synthesis and
visualization environments (from music to medicine),
and individuated context–dependent product specifica-
tion frameworks. In all these cases the mathematical
model must be sophisticated, the numerical approxi-
mation must be accurate, and the response to a query
must be rapid — commensurate with real–time deci-
sion or interaction requirements — despite the limited
processor power and storage capacity available in the
field. We shall furthermore be interested in both input–
output evaluation and visualization; the latter places
additional demands on memory.

We shall suppose that the system input µ ∈ D ⊂ RP

enters as a parameter in a partial differential equation
(PDE) which describes the relevant physical phenom-
ena over the time interval of interest 0 ≤ t ≤ t f and the
appropriate spatial domain Ω ⊂ Rd, d = 2 or 3. This
PDE, say a linear-time-invariant (LTI) parabolic equa-
tion, yields (i) a field variable over Ω, u(t; µ) ∈ X(Ω)

Email addresses: huynh@mit.edu (D.B.P. Huynh),
dknez@mit.edu (D.J. Knezevic), peterson@tacc.utexas.edu
(J.W. Peterson), patera@mit.edu (A.T. Patera)

URL: http://augustine.mit.edu/ (A.T. Patera)

(where X(Ω) is an appropriate function space), and (ii)
a scalar output of interest, s(t; µ) ∈ R, which can be ex-
pressed as a (say) linear functional of the field variable,
s(t; µ) = `(u(t; µ)). (In actual practice we may consider
many outputs.) Note that the parameter dependence
proceeds from the PDE through the field variable and
finally to the engineering output.

We shall distinguish between the pre–deployment
period and the post–deployment or equivalently de-
ployed period. The pre–deployment period takes place
in the laboratory: we prepare the system and associ-
ated computational model for subsequent service. The
deployed period takes place in the field: we put the
system and associated computational model — now
implemented on an embedded or more generally “de-
ployed platform” — into service. In the deployed
stage the computational task is well–prescribed: given
a query instance µ′ ∈ D we wish to (a) predict the out-
put, µ′ ∈ D → (u(tk; µ′) →) s(tk; µ′), 0 ≤ k ≤ K, and
(b) visualize the field, µ′ ∈ D → u(tk; µ′)|R, 0 ≤ k ≤ K;
here R ⊂ Ω is a region or manifold selected for render-
ing. (We reserve µ′ to denote a query instance – a re-
quest post-deployment.) Note the field variable plays
an important role both in input–output evaluation and
of course in visualization.

To perform this computational task the PDE is typi-
cally discretized by a finite difference discretization in
time and a finite element (FE) discretization in space.
In time we consider a (say) Crank-Nicolson scheme

Preprint submitted to Computers and Fluids August 26, 2010

associated to time levels tk = k∆t, 0 ≤ k ≤ K, where
∆t = t f /K; in space we consider Galerkin projec-
tion over a FE approximation subspace XN (⊂ X)
of large dimension N . Our “truth” approximation is
then given, for any µ ∈ D, by uN (tk; µ), sN (tk; µ) =

`(uN (tk; µ)), 0 ≤ k ≤ K. We note that, given our
restriction to µ ∈ D, all solutions of interest per-
force reside on the parametrically induced manifold
MN ≡ {uN (tk; µ) | 0 ≤ k ≤ K, µ ∈ D}. We observe
that this manifold is relatively low–dimensional; we
can further anticipate, and in many cases demonstrate,
that this manifold is smooth.

Our truth approximation shall provide, for suffi-
ciently small ∆t and in particular for sufficiently large
N , the desired accuracy. However, we cannot expect
real-time response in particular on deployed platforms
typically characterized by limited processor power and
memory capacity. We thus pursue the certified reduced
basis (RB) approach [1, 2, 3, 4, 5] as an approxima-
tion to the truth approximation. In time we directly in-
herit the Crank–Nicolson discretization of the truth; in
space we consider Galerkin projection over an RB ap-
proximation space XN (⊂ XN) of small dimension N.
Our RB approximation is then given, for any µ ∈ D,
by uN(tk; µ), sN(tk; µ) = `(uN(tk; µ)), 0 < k ≤ K. We
also provide rigorous a posteriori bounds, ∆N(tk; µ)
and ∆s

N(tk; µ), for the error in the RB field approxima-
tion and the RB output approximation, respectively:
for any µ ∈ D, ‖uN (tk; µ) − uN(tk; µ)‖X ≤ ∆N(tk; µ),
|sN (tk; µ) − sN(tk; µ)| ≤ ∆s

N(tk; µ), 0 ≤ k ≤ K. We may
thus say that our RB approximation is certified.

The RB approximation space XN is specifically de-
signed to well approximate functions which reside on
the parametrically induced manifold of interest, MN :
indeed, XN is developed as the span of optimally se-
lected (and combined) snapshots on the manifoldMN .
(In contrast, even in a mesh–adaptive context, the truth
FE approximation space XN can represent a large class
of functions very distant fromMN .) We can thus ex-
pect N � N . The latter may in certain simple in-
stances be proven, may in general be confirmed a pos-
teriori through our error bounds, and may in practice
be observed in a wide variety of problems. (Of course
the “constants” will certainly depend on the particu-
lar problem under study and especially on the num-
ber of parameters, P.) This reduction in dimension
in conjunction with an Offline–Online computational
approach provides the RB advantage in the real–time
deployed context. We now discuss the Offline–Online
decomposition.

In the Offline stage we develop the RB space: we
identify optimal (combinations of) snapshots on MN

and we “precompute” various parameter–independent
functionals of these snapshots implicated in subse-
quent RB approximations and associated RB error
bounds; this Offline stage is expensive — O(Nγ)
FLOPs, where γ is a problem-dependent factor re-

lated to the computational cost of the truth solves.
The Offline stage yields a (problem-dependent) Online
Dataset; this dataset is small — O(Q,N) data, where Q
measures the parametric complexity of our PDE. In the
Online stage we invoke the Online Dataset to perform
rapid certified output evaluation: given any µ′ ∈ D
we calculate the RB output approximation and asso-
ciated RB output error bound, respectively sN(tk; µ′)
and ∆s

N(tk; µ′), 0 ≤ k ≤ K. This Online stage is very
inexpensive — O(Q,N,K) FLOPs with N � N . (In
the next section we also discuss Online certified visu-
alization; in this case the Online Dataset and Online
operation count will depend on N and in particular on
the number of FE degrees of freedom associated with
R. We note, however, that the visualization is a useful
but optional step: the key quantities are the output(s)
and associated error bound(s).)

We now associate the Offline stage to the pre–
deployment period and the Online stage to the post–
deployment period. The expensive Offline stage is con-
ducted prior to deployment and hence the considerable
Offline cost is not our principal concern. (Of course,
control of the Offline cost is, in practice, very impor-
tant; we discuss this further in the next section.) Only
the inexpensive Online stage is invoked in the deployed
period and hence only the very low Online cost will
determine our primary performance metric — reliable
and rapid response in the field. We may thus achieve
our objective of high–fidelity real-time simulation on
deployed platforms, as we now describe.

In the Online stage, the response to each query in-
stance, µ′ ∈ D → sN(tk; µ′),∆s

N(tk; µ′), 0 ≤ k ≤
K, requires sufficiently few operations — O(Q,N,K)
FLOPs, independent of N — and sufficiently little
data — O(Q,N) storage for the Online Dataset, in-
dependent of N — to achieve real-time response on
deployed (“thin”) platforms. Furthermore, our rigor-
ous error bound ∆s

N(tk; µ′), 0 ≤ k ≤ K, will guarantee
the accuracy of the RB output prediction relative to the
high-fidelity truth. (We emphasize that the error bound
does not require appeal to uN (tk; µ′), sN (tk; µ′).) We
thus obtain not just rapid, but also accurate, optimal,
and safe decisions in the field.

In Section 2 we describe, for a simple model prob-
lem, the reduced basis approach. We emphasize the
computational aspects: the RB approximation and as-
sociated RB a posteriori error estimation “kernels”;
the procedure for identification of optimal RB ap-
proximation spaces; and the Offline, Online Dataset,
and Online decomposition. In Section 3 we elabo-
rate upon the Offline and Online procedures within
a hierarchical architecture: we present the Offline
procedure from a parallel perspective and describe a
particular implementation on the TeraGrid supercom-
puter Ranger at the Texas Advanced Computing Cen-
ter (TACC); we present the Online procedure from a
deployed/embedded perspective and describe a partic-

2

ular implementation on a Nexus One Android phone
“model platform.” In Section 4 we present results for
three examples: a frequency–domain acoustics prob-
lem in a two–dimensional horn configuration Ω —
to illustrate the necessity of high–fidelity PDE mod-
els and accurate numerical solutions; a transient lin-
ear heat conduction problem in a three–dimensional
“Swiss Cheese” configuration Ω — to illustrate treat-
ment of many parameters; and a transient incompress-
ible fluid flow problem in a three–dimensional sphere–
in–duct configuration Ω — to illustrate extension to
(quadratic) nonlinearities.

2. Certified Reduced Basis Formulation

2.1. Model Problem
We shall illustrate the approach for a very simple

model problem. We consider steady heat conduction
in a (say, polygonal) domain Ω = Ω1 ∪ Ω2: the nor-
malized thermal conductivity in Ω1 (respectively, Ω2)
is unity (respectively, κ). We apply a uniform unit heat
source over the entire domain Ω. We require that the
temperature field, u, vanish — zero Dirichlet condi-
tions — on the domain boundary ∂Ω. We consider a
single (P = 1) parameter: µ ≡ κ, the conductivity in
Ω2; D, the parameter domain, is given by (say) the in-
terval [1, 10]. We take for our output of interest, s, the
integral of the temperature over Ω1. (Note we may, for
example, expand the model to include convection by a
prescribed incompressible velocity field. Many other
extensions are possible.)

In mathematical terms, u(µ) ∈ X, where X = H1
0(Ω);

here H1
0(Ω) = {v ∈ H1(Ω) | v|∂Ω = 0}, H1(Ω) = {v ∈

L2(Ω) | ∇v ∈ (L2(Ω))2}, and L2(Ω) is the space of
square integrable functions over Ω. We associate to
the space X the inner product (w, v)X ≡

∫
Ω
∇w · ∇v and

induced norm ‖w‖X ≡
√

(w,w)X and to the space L2(Ω)
the inner product (w, v) ≡

∫
Ω

wv and induced norm
‖w‖ ≡

√
(w,w). We then define the continuous and co-

ercive bilinear forms a1 ≡
∫

Ω1 ∇w·∇v, a2 ≡
∫

Ω2 ∇w·∇v,
and

a(w, v; µ) ≡ a1(w, v) + µa2(w, v), ∀w, v ∈ X, (1)

and the bounded linear forms f (v) =
∫

Ω
v and `(v) =∫

Ω1 v. We can now provide the weak statement of
our PDE: given µ ∈ D, find u(µ) ∈ X such that
a(u(µ), v; µ) = f (v), ∀v ∈ X; evaluate s(µ) = `(u(µ)).
(We may readily accommodate several or even many
outputs.)

We note that (1) is a special case of a more general
hypothesis. We say that our bilinear form a is “affine
in parameter” (or more precisely, “affine in functions
of the parameter”) if we can write

a(w, v; µ) =

Q∑
q=1

Θq(µ)aq(w, v), (2)

where the Θq : D → R are easily evaluated
(O(1) FLOPs) parameter–dependent coefficient func-
tions and the aq are parameter–independent continuous
bilinear forms. Similar expansions may be developed
for f and `. The assumption (2) is a prerequisite for
the crucial Offline–Online decomposition discussed in
greater detail below.

In fact many problems admit a representation of the
form (2) which can either be identified by inspection
or, in the case of certain geometric variations, be con-
structed in an automated fashion [5]. (Note that the
RB approximation is developed on a fixed reference
domain Ω; geometric variations thus appear as coeffi-
cient functions which arise from the transformation of
the actual parameter–dependent domain Ωo(µ) to Ω.)
More generally, we can develop an affine representa-
tion which approximates the bilinear form a [6]; in
certain cases we can further develop rigorous bounds
to quantify the additional “consistency” errors intro-
duced [7].

We next define the truth finite element (FE) approx-
imation. We introduce a triangulation of Ω, TN , to
which we associate a standard first-order conforming
polynomial FE approximation space XN . We can then
provide the truth approximation: given µ ∈ D, find
uN (µ) ∈ XN such that a(uN (µ), v; µ) = f (v), ∀v ∈ XN ;
evaluate sN (µ) = `(uN (µ)). For future reference we
denote by V ⊂ {1, . . . ,N} the set of vertices of TN

associated to a region or manifold R ⊂ Ω over which
we wish to visualize the field uN (µ).

2.2. Reduced Basis Kernels
We consider the primal-only reduced basis (RB) for-

mulation. (In actual practice we often pursue primal–
dual RB approximations, as described in detail in Sec-
tion 11 of [5]: primal–dual approaches can be signif-
icantly more efficient both in the Offline and Online
stages.) We shall assume that we are given Nmax nested
RB approximation spaces X1 ⊂ X2 ⊂ · · · XN · · · ⊂

XNmax ; here XN is of dimension N. The RB approx-
imation uN(µ) ∈ XN is expressed in terms of (,)X-
orthonormal basis functions {ζi}i=1,...,Nmax :

uN(x; µ) =

N∑
j=1

ωN j(µ)ζ j(x), (3)

where x is a point in Ω. The ζi ∈ XN — orthonormal-
ized snapshots fromMN — are in practice piecewise-
linear functions over Ω defined by the nodal values
ζ j(xi), 1 ≤ i ≤ N , 1 ≤ j ≤ N, where xi denotes a
vertex of the triangulation TN . (Note that for visual-
ization purposes uN(µ)|R ∈ XN may be reconstructed
solely in terms of ζ j(xi), i ∈ V, 1 ≤ j ≤ N.) At the
conclusion of this section we shall be in a position to
succinctly summarize the algorithm by which these RB
spaces — in particular, the underlying snapshots — are
optimally selected.

3

We can now provide the RB Galerkin approxima-
tion: given µ ∈ D, find uN(µ) ∈ XN such that
a(uN(µ), v; µ) = f (v), ∀v ∈ XN ; evaluate sN(µ) =

`(uN(µ)). We know by Céa’s Lemma that this approx-
imation is optimal (in the energy norm): the Galerkin
projection chooses the best linear combination of snap-
shots. We can further develop the corresponding ma-
trix equations (inserting (3) into our weak form and
testing on v = ζi, 1 ≤ i ≤ N): given µ ∈ D,
find ωN(µ) ∈ RN , the solution to AN(µ)ωN(µ) = FN ,
and evaluate sN(µ) = LTωN(µ). Here AN i, j(µ) =

a(ζ j, ζi; µ), 1 ≤ i, j ≤ N, is our stiffness matrix, FN i =

f (ζi), 1 ≤ i ≤ N, is our load vector, and LN i = `(ζi), 1 ≤
i ≤ N, is our output vector. Note that AN , FN , and LN

are principal submatrices/subvectors of ANmax , FNmax ,
and LNmax , respectively, thanks to our hierarchical RB
spaces.

We could simply calculate, for any given query in-
stance µ′, the matrix elements AN i, j(µ′) = a(ζ j, ζi; µ′),
1 ≤ i, j ≤ N, as N2 integrations over Ω. However this
approach is very expensive — O(NN2) — and indeed
perhaps even more expensive than direct calculation
of the truth FE approximation uN (µ′), sN (µ′). Instead,
and in anticipation of our Offline-Online strategy, we
must partition the computation of ωN(µ′) and sN(µ′)
into two complementary components: a “construction”
part which will be expensive — operation count O(N)
— but which will not depend on the query instance µ′

and hence may be performed in the pre–deployment
period; an “evaluation” part which will depend on the
query instance µ′ but which will be inexpensive — op-
eration count O(N), not O(N) — and hence can be ac-
commodated in the deployment period.

The key enabler is the “affine in parameter” struc-
ture of the bilinear form: (1) implies that a(ζ j, ζi; µ) =

a1(ζ j, ζi) + µa2(ζ j, ζi), 1 ≤ i, j ≤ N, and hence that
AN(µ) = A1

N + µA2
N , where A1

N i, j = a1(ζ j, ζi) and
A2

N i, j = a2(ζ j, ζi), 1 ≤ i, j ≤ N, are parameter–
independent “proto”–stiffness matrices. (In the oper-
ation count and storage estimates developed below we
shall extend this argument to the general affine expan-
sions described by (2). In this case we will now have
Q proto–stiffness matrices.)

The necessary construction-evaluation partition is
now readily identified. In the construction part we
compute (and store) the elements of A1

N and A2
N — in

O(NN2) FLOPs. In the evaluation part, for a given
query instance µ′, we first form AN(µ′) = A1

N + µ′A2
N

from (the stored) A1
N and A2

N — in O(N2) FLOPs; we
then solve the small system AN(µ′)ωN(µ′) = FN — in
O(N3) FLOPs; finally we calculate sN(µ′) = LT

NωN(µ′)
— in O(N) FLOPs. (Note that AN(µ) is small but, un-
fortunately, full.) The operation count for the evalua-
tion part is independent of the truth resolution, N .

We next provide, now given uN(µ) (equivalently
ωN(µ)), the RB a posteriori error estimators. We first

define the residual as r(v; µ) ≡ f (v) − a(uN(µ), v; µ),
∀v ∈ XN . The Riesz representation of the residual
R(µ) ∈ XN is given by

(R(µ), v)X = r(v), ∀v ∈ XN . (4)

We may then introduce our error bounds ∆N(µ) ≡ ‖R‖X
and ∆s

N(µ) ≡ C`‖R‖X , where C` is a calculable con-
stant (the dual norm of `). Note that the X-norm error
bound ∆N(µ) has the anticipated form: the dual norm
of the residual divided by a lower bound for a stability
(here coercivity, more generally inf-sup) constant; for
our simple model problem a lower bound for the sta-
bility constant is unity, but in general this will not be
the case.

It can be readily demonstrated that for any µ in D
(and for any N, 1 ≤ N ≤ Nmax), ‖uN (µ) − uN(µ)‖X ≤
∆N(µ) and |sN (µ)−sN(µ)| ≤ ∆s

N(µ). We can further pro-
vide an effectivity result: for any µ in D (and for any
N, 1 ≤ N ≤ Nmax), ∆N(µ)/‖uN (µ) − uN(µ)‖X ≤ 10; our
error bound is thus rigorous and “sharp.” (The effectiv-
ity, here 10, will more generally depend indirectly on
the parameter domainD and directly on the coercivity
and continuity constants associated with the bilinear
form a.)

In anticipation of our Offline-Online strategy we
must now find a partition of the computation of ‖R‖X
into construction and evaluation components. Towards
that end, we insert the residual expression into (4) and
invoke the affine structure of our bilinear form, (1), and
our representation (3), to obtain

(R(µ), v)X = f (v) −
N∑

i=1

ωN i(µ)a1(ζi, v)

−

N∑
i=1

µωN i(µ)a2(ζi, v), ∀v ∈ XN .

We then apply linear superposition to express R(µ) as

R(µ) =

2N+1∑
i=1

Φi(µ)Gi , (5)

for Φi: D → R, Gi ∈ XN , 1 ≤ i ≤ 2N + 1.1 Note that
the “Riesz’s pieces” Gi, 1 ≤ i ≤ N, are independent of
µ. Finally, from (5) it follows that

∆N(µ) =
√

ΦT (µ)ΛΦ(µ), ∆s
N(µ) = C`∆N(µ) , (6)

where Λi, j ≡ (Gi,G j)X , 1 ≤ i, j ≤ 2N + 1.
The construction-evaluation partition is then clear:

in the construction part we form and store the µ′-
independent quantity Λ (and C`) — in O(NN2)

1We provide the explicit form: Φ1 = 1, Φ2(µ) = ωN 1(µ),
Φ3(µ) = ωN 2(µ), . . . ,ΦN+2 = µωN 1(µ), . . . ,Φ2N+1 = µωN N (µ);
∀v ∈ XN , (G1, v)X = f (v), (G2, v)X = −a1(ζ1, v), (G3, v)X =

−a1(ζ2, v), . . ., (GN+2, v)X = −a2(ζ1, v), . . ., (G2N+1, v)X =

−a2(ζN , v).

4

FLOPs; in the evaluation part we calculate the error
bound from (6) — in O(4N2) FLOPs. (In general, the
stability constant cannot be deduced by inspection but
rather must be calculated by an Offline–Online “Suc-
cessive Constraint Method” (SCM) [8]: the SCM Of-
fline stage is rather onerous; however, the SCM On-
line cost depends only on Q and is typically negligible
compared to the RB Online cost.)

We can encapsulate the computational tasks asso-
ciated with RB approximation and RB error estima-
tion in the following procedures. Construction is rep-
resented as

[Seval] = Construction({ζn}n=1,...,Nmax), (7)

where Seval ≡ {A1
Nmax

, A2
Nmax

, FNmax , LNmax ,Λ,C`}. Evalu-
ation is represented as

[ωN(Ξ),∆N(Ξ), sN(Ξ),∆s
N(Ξ), µ∗] =

Evaluation(Ξ; N;Seval), (8)

where Ξ ⊂ D is either a single value or a set of values
of the parameter, and µ∗ = arg maxµ∈Ξ ∆N(µ) (which
will serve in the Greedy Procedure below).

We now summarize the operation counts under the
general affine hypothesis (2) and for both linear ellip-
tic PDEs and LTI parabolic PDEs. In the elliptic case,
K = 1; in the LTI parabolic case, K denotes the num-
ber of time levels (note that Evaluation returns the
RB approximation and associated error bounds for all
time levels, 1 ≤ k ≤ K). The operation count for
Construction is O(NQN2 +NQ2N2 +NγQN); there
is no explicit dependence on K, though certainly for
more complex temporal dependence we will require
larger N for any given error tolerance. The storage re-
quirement for Seval is O(QN2 + Q2N2). The operation
count for Evaluation is O(QN2 + N3 + KN2 + Q2N2);
there is no explicit dependence on P, though in gen-
eral larger P (more parameters) will require larger N
for any given error tolerance.

2.3. The Greedy Procedure

To identify our snapshots and hence our RB spaces
XN , 1 ≤ N ≤ Nmax, we apply the Greedy Procedure
of Algorithm 1. (In the case of parabolic PDEs this
Greedy Procedure must be replaced with a POD(t)–
Greedy(µ) Procedure [9].) The spaces are constructed
sequentially: at each iteration we append the snapshot
from MN

Ξtrain ≡ {uN (µ) | µ ∈ Ξtrain} which is least well
represented by the current RB approximation space as
measured by the RB field approximation error bound.
Note that in Line 8 I is the identity operator and ΠXN is
the orthogonal projection onto XN with respect to the
(,)X inner product.

The operation count for the Greedy Procedure
(for elliptic PDEs) is O(NγNmax) + O(NγQNmax) +

O(NQ2N2
max) + O(ntrainQN3

max) + O(ntrainQ2N3
max) +

Algorithm 1 Greedy Algorithm.
1: specify Ξtrain ⊂ D of size ntrain and tolerance ε.
2: set N = 1, X1 = uN (µ1) (µ1 arbitrary inD).
3: set ζ1 = uN (µ1) (normalized: ‖ζ1‖X = 1).
4: set Seval = Construction(ζ1).
5: set [.,err,.,.,µ∗] = Evaluation(Ξtrain; 1;Seval).
6: while [err] > ε do
7: εN = err (for “reporting” purposes);
8: ζN+1 = (I − ΠXN)uN (µ∗) (normalized);
9: N ← N + 1;

10: S eval = Construction({ζi}i=1,...,N) (update);
11: set [.,err,.,.,µ∗] = Evaluation (Ξtrain,N, S eval);
12: end while
13: set Nmax ← N.

O(ntrainN4
max). The first term relates to the calcula-

tion of the snapshots — Line 8; note γ ≥ 1 relates
to the efficiency of the truth solution procedure. The
remainder of the terms relate to Line 10 and Line 11
— the operation counts associated with “integration”
of Construction and Evaluation from N = 1 to
N = Nmax. We make two crucial observations: the up-
date snapshot is determined by the error bound and not
the true error — the truth solution is calculated, in Line
8, only for the winning “arg max” candidate, deduced
in Line 11; as ntrain → ∞, the cost of the “many query”
calculation ∆N(Ξtrain) is determined solely by the inex-
pensive Evaluation — the expensive Construction
is asymptotically negligible. This strategy ensures
O(ntrain) + O(N) rather than O(ntrainN) complexity and
thus permits consideration of very large train sets Ξtrain

for which MN
Ξtrain will indeed be a good surrogate for

the actual manifold of interestMN ≡ {uN (µ) | µ ∈ D}.
In actual practice, the Greedy Procedure can identify

very effective RB spaces. Large train samples — en-
abled by our error bound “importance sampling” strat-
egy and Construction–Evaluation many–query
procedure — are of course imperative in particular for
larger P.

2.4. Offline–Online Decomposition

The Offline–Online Decomposition is now readily
identified. In the process, we also now include the vi-
sualization aspect of our approach.

The Offline stage is simply the Greedy Proce-
dure. The Greedy Procedure (through Construction)
yields Seval.

The Online Dataset is then {Seval,Svis}, where
Svis ≡ ζ j(xi), i ∈ V, 1 ≤ j ≤ N. The Online Dataset,
for either linear elliptic PDEs or LTI parabolic PDEs,
is of size O(QN2 + Q2N2) + O(|V|N), where |V| de-
notes the cardinality of the vertex set associated with
the desired visualization region R. The first contri-
bution is due to Seval and is independent of N . The
second contribution is due to Svis and of course is not

5

independent ofN ; however, in practice we envision se-
lective rendering and hence |V| � N — for example
|V| ≈ cN2/3, c � 1, for R a small two–dimensional
manifold within a three–dimensional domain Ω.

The Online stage comprises certified output eval-
uation and visualization for any given query in-
stance µ′ ∈ D. Certified output evaluation —
calculation of the RB output prediction and as-
sociated RB output a posteriori error bound —
is effected by [ωN(µ′),∆N(µ′), sN(µ′),∆s

N(µ′), .] =

Evaluation(µ′; N;Seval); as described in detail ear-
lier, the operation count is independent ofN . Certified
visualization is then effected by

[figure,∆N,Γ(µ′)] = Visualization(ωN(µ′),Svis),
(9)

where figure is a rendering based on

uN(xi; µ′) =

N∑
i=1

ωN j(µ′)ζ j(xi), i ∈ V,

and ∆N,Γ(µ′) is an L2(Ω) error bound for uN(µ)|R. (Un-
der suitable hypotheses on R we may form ∆N,Γ(µ′) =

CΓ∆N(µ′), where CΓ may be calculated Offline.) The
operation count for Visualization is O(|V|KN) (for
all time levels K in the LTI parabolic case).

3. Hierarchical Architecture

We have previously identified the pre-deployment
period with the Offline stage and the deployment pe-
riod with the Online stage. Now we further identify
the Offline stage with a parallel supercomputer (as war-
ranted) and the Online stage with a “thin” platform: the
former has the necessary speed and memory to address
the large truth calculations required; the latter — with
minimal processing power and memory capacity — is
of the reduced physical size and weight, and cost, to
permit service (often at many “sites” or “installations”)
in the field.

The Offline stage admits very efficient treatment
on a massively parallel machine [10]. There are
two different (heterogeneous) opportunities for data–
parallelism. First, in Line 8 of the Greedy Procedure,
we can exploit classical parallelism in space for cal-
culation of the truth solution: the domain Ω is broken
into nproc smaller subdomains (and associated sets of fi-
nite element degrees of freedom) which are in turn dis-
tributed to nproc processors. Second, in Line 11 of the
Greedy Procedure, we can exploit parallelism in pa-
rameter for calculation of the “arg max”: the “domain”
Ξtrain is broken into nproc partitions (and associated sets
of parameter values) which are in turn distributed to
nproc processors. In the first case, the calculations on
different processors are of course coupled and hence
communication and granularity will impact parallel ef-
ficiency; in the second case, the calculations on differ-
ent processors are independent — (copies of) the same

RB model executing different data — and thus, as in
Monte–Carlo simulations, the parallel efficiency will
be very high. These algorithms are implemented [10]
on (a subset of) the Ranger supercomputer, which has
in total 62,976 cores, 123TB of memory, and a theo-
retical peak performance of 579 TFLOPs.

The Online stage can be hosted on many different
small and inexpensive “deployed” platforms from lap-
tops and tablets to smartphones and embedded chips.
The “App” software is essentially the Evaluation

code and the Visualization code. The Online
Dataset for any particular problem — required by
Evaluation and Visualization — can either be
stored on the deployed platform or downloaded over
the Internet: the former would be relevant for “in
the loop” embedded applications such as detection
or control; the latter might be relevant to more gen-
eral but still “interactive” environments such as ed-
ucation or design. In actual practice more difficult
problems (larger N,Q) and in particular more exten-
sive visualization (larger |V|) may not be feasible on
very thin deployed platforms since the Online Dataset
will be too large. At present the “App” is imple-
mented in the Java programming language and exe-
cuted on the Nexus One Android–based smartphone —
a “model” deployed platform — with a 1GHz proces-
sor and 512MB of memory with double-precision ac-
curacy; the OpenGL ES library is invoked for graphical
renderings. Note that the App has access to a limited
subset of the total memory which certainly restricts the
range of problems and parameters that may be consid-
ered.

In this context we briefly describe an enhancement
to our current approach which simultaneously can
extend both Offline parallel performance and Online
deployed capability: “hp” reduced basis approaches
[11]. In the hp approach, in a new Offline “h” pre–
preprocessing step we (optimally) decompose the pa-
rameter domainD into smaller parameter subdomains;
we then pursue the standard (in fact, “p”) certified
reduced basis approach in each subdomain — Of-
fline Greedy Procedure, and Online Evaluation and
Visualization. The hp approach offers new op-
portunities for Offline (embarrassing) parallelism: the
standard “p” certified reduced basis procedures can be
pursued in parallel on each parameter subdomain. And
even more importantly, the hp approach provides a
mechanism for consideration of larger problems on de-
ployed platforms: we may download only the data as-
sociated with a particular parameter subdomain or sub-
domains, and implement “parameter caching” notions
to anticipate future parameter (subdomain) requests.

Finally, we note that although we implement the
Offline and Online stages on vastly different ma-
chines with very different capabilities, the end result
is in some sense machine–agnostic: the smartphone
(low-order reduced basis) prediction is, to within

6

±∆s
N(µ), indistinguishable from the parallel supercom-

puter (high–fidelity finite element) calculation. We can
thus say that we effectively achieve “supercomputing
on a phone.” Absent rigorous error bounds no such
equivalence can be claimed.

4. Numerical Examples

We first consider the Helmholtz equation and in par-
ticular the planar acoustics horn problem described in
detail in [12]. The full domain Ωo is depicted in Fig-
ure 1(a) and comprises both the horn proper as well
as a large circular segment on which second–order ra-
diation conditions [13] are applied. The (symmetric
about y = 0) horn domain Ωo is defined by the location
of the top wall yhorn(x), 0 ≤ x ≤ 10: yhorn(x) = 1/2 for
0 ≤ x ≤ 5; yhorn(x) = (1/5)(7.5− x) + (2η/5)(x− 5) for
5 ≤ x ≤ 7.5; yhorn(x) = (2η/5)(10− x)+6/5(x−7.5) for
7.5 ≤ x ≤ 10.0; here η is a parameter that defines the
problem geometry. Note we state the problem in non-
dimensional form: all lengths are scaled by the “inlet”
channel width w̃; all pressures are scaled by a nomi-
nal input pressure po

0 (note we replace our independent
variable uo with po to avoid confusion).

The governing equations for the (complex) pressure
are then

−∇2 po − k2 po = 0, in Ωo,

where k = ω̃H̃/c̃ for ω̃ the angular frequency and
c̃ the speed of sound. We impose a right–traveling
wave condition at the inlet Γin, ikpo + ∂po/∂n = 2ik,
homogeneous Neumann conditions on the horn walls,
∂po/∂n = 0, and second order radiation conditions on
the circular farfield boundary. (Here n denotes outward
normal.) We choose two parameters, µ1 = η, µ2 = k,
and specify the parameter domain D = [1.7, 1.8] ×
[0, 2]. (A larger parameter domain is readily accom-
modated by the reduced basis approach — but not by
our current deployed platform.) The output of interest
is the modulus of the reflection coefficient,

s(µ) =

∣∣∣∣∣∣
∫

Γin

pody − 1

∣∣∣∣∣∣ ;
note that 1− s can be related to the fraction of the wave
energy transmitted to the surroundings [14]. Finally,
for our “truth” we take a second order FE approxima-
tion with 14, 935 degrees of freedom. The horn prob-
lem serves to demonstrate the need for high-fidelity
models and accurate numerical calculations: only (ac-
curate solutions to) the PDE can reproduce the detailed
acoustic response.

This horn problem stretches the basic formulation
of Section 2 in several ways. First, the field variable
is now complex. Second, the problem is elliptic but
not coercive, which in particular complicates the cal-
culation of the (inf-sup) stability constant required for

our rigorous error bounds [15].2 Third, the output can
be derived from a linear functional but in fact is not a
simple linear functional of the field. And fourth, the
problem is posed on a parameter–dependent domain
Ωo(η): upon piecewise–affine mapping to the reference
domain Ω ≡ Ωo(η = 1.75) we recover the necessary
form (2) with Q = 11 terms. Note that visualization is
in general performed with respect to the actual (possi-
bly parameter–dependent) domain Ωo(µ).

In this two–dimensional case the Offline calculation
does not require a large machine and hence the Of-
fline stage is performed on a standard desktop. (Ob-
viously three–dimensional versions of this same prob-
lem in particular for higher k would be demanding
given the oscillatory structure of the truth solution.)
We shall thus focus on the Online results as provided
by the Nexus One implementation; in all cases we con-
sider N = Nmax = 53. We show in Figure 1(a) the
Visualization of the real part of the pressure for
η = 1.5 and k = 1.75. Note that for two–dimensional
problems we often can and hence do render the entire
field (in which case |V| = 3832: here we interpolate
the field onto a first order mesh to reduce |V|) even on
relatively thin platforms. We next present (though in
practice compute first) in Figure 1(b) the Evaluation
of our output for Ξ given by (η = 1.5, k j) j=1,...,40:
the middle curve is sN(Ξ) while the bottom and top
curves represent sN(Ξ)−∆s

N(Ξ) and sN(Ξ) + ∆s
N(Ξ), re-

spectively. We emphasize the importance of the error
bounds in ensuring not just rapid response but also reli-
able response: the truth output must reside between the
bottom and top curves. Finally, we note that both Fig-
ure 1(a) and Figure 1(b) are direct “screen grabs” from
our Nexus One implementation. Also we note that in
this example (and the subsequent examples below) the
Online computation time on the phone only takes one
or two seconds.

We next consider the heat equation — transient ther-
mal conduction — in the complex three–dimensional
“Swiss Cheese” configuration. The domain Ω is given
by the unit cube [0, 1]3 \ S , where S is a lattice of 27
spheres of radius 1/5 and respective centers [0, 1/2, 1]×
[0, 1/2, 1]. (Note we directly consider the nondimen-
sional version of the problem based on the standard
conduction scalings.) For future reference we describe

Ω = ∪8
j=1Ω j,

where Ω j, 1 ≤ j ≤ 8, is the intersection of
Ω with the 8 octants given by [0, 1/2]3, [1/2, 1] ×
[0, 1/2]2, . . . , [1/2, 1/2]3.

The governing equations are most easily described

2On the phone we resort to a shortcut: the inf-sup constant for
the Online stage is replaced by the minimum inf-sup lower bound
over a dense sample inD calculated in the Offline stage.

7

in weak form: find u(t; κ) for 0 ≤ t ≤ t f ≡ 1 such that

∫
Ω

∂u
∂t

v+

7∑
j=1

κ j

∫
Ω j

∇u·∇v+

∫
Ω8

∇u·∇v =

∫
Γb

v,∀v ∈ X,

(10)
where κ j is the thermal conductivity of region Ω j rel-
ative to the thermal conductivity of region Ω8 (note
we assume uniform specific heats and hence the κ j

may also be interpreted as scaled thermal diffusivities),
X ≡ {v ∈ H1(Ω) | vΓt = 0}, Γb is the bottom bound-
ary “z = 0” (on which we impose inhomogeneous
flux boundary conditions), and Γt is the top boundary
“z = 1” (on which we impose zero Dirichlet condi-
tions). Note that we impose homogeneous natural, in
this case zero flux, conditions on all other boundaries.
We choose P = 7 parameters, µ j = κ j, 1 ≤ j ≤ 7,
and specify the parameter domain D = [0.5, 2]7. We
consider several outputs corresponding to averages of
the temperature over small cubes; for example, the first
output is the average temperature over [0, 1/4]3. Fi-
nally, we select a backward Euler temporal discretiza-
tion with K = 100 time levels and a P1 truth finite ele-
ment approximation space with N = 241, 520 degrees
of freedom. This example is intended to illustrate the
extension of the reduced basis formulation to parabolic
PDEs but also the consideration of three–dimensional
spatial domains and the treatment of many parameters;
the latter increase the burden of both the Offline and
Online stages.

The RB treatment of parabolic PDEs parallels quite
closely the RB treatment of elliptic PDEs presented in
Section 2. We elaborate briefly here on the features
particular to RB treatment of LTI parabolic PDEs: The
affine hypothesis on bilinear (and linear) forms re-
mains in force; we deduce from inspection of the weak

(a) (b)

Figure 1: (a) Visualization on Ωo(µ′) of the real part of the pressure
for µ′ = (1.75, 2.0). (b) Modulus of the reflection coefficient for
(η = 1.75, k j ∈ [0, 2]) j=1,...,50. We show the RB outputs (marked
with × symbols) and corresponding upper and lower bounds — here
the bounds are sufficiently tight that they cannot be distinguished
from the RB output.

form (10) that for our example we require one proto
mass matrix and Q = 8 proto stiffness matrices. The
RB Galerkin approximation requires little modification
from the elliptic case in particular since the RB tempo-
ral discretization is inherited from the truth. The RB
error bounds are, as in the elliptic case, derived from
classical stability arguments, however now more care
must be exercised in definition of the proper (spatio-
temporal) norms; the latter, in turn, affects the class of
output functionals that we may consider — for exam-
ple, we can provide pointwise bounds in time only for
L2(Ω) output functionals. The RB spaces are now ob-
tained by a POD(t)–Greedy(µ) Procedure [9]: for each
µ∗ identified by the Greedy(µ), a single POD mode —
associated with the error in the RB approximation —
is appended to the RB space. (Note also that we may
“train” on an impulse function in order to treat with
a single RB approximation any control function speci-
fied in the Online (deployed) stage.) Finally, the opera-
tion counts for LTI parabolic PDEs will typically scale
as less than K times the elliptic effort, as summarized
in the estimates provided in Section 2.

In this example the Offline burden is considerable
and the parallel implementation (here, on Ranger and
based on the libMesh [16] library) important both as
regards the computation of the truth time series (from
which we extract our POD mode) — parallelized over
Ω — and the “arg max” over the extensive Ξtrain sam-
ple required by the many parameters (large P) — par-
allelized over Ξtrain. We present in Figure 2 the POD-
Greedy convergence, as measured by εN , for a train
sample of size 100,000; computational (wall–clock)
time on 512 cores is 3.5 hours. (Note that in this con-
text we may interpret εN as a bound for the maximum
over µ in Ξtrain of the maximum over k = 1, . . . ,K, of
‖uN (tk; µ)−uN(tk; µ)‖L2(Ω).) We now proceed to the On-
line stage: we present in Figure 3 the Visualization
for µ′ = (2, 2, 0.5, 2, 1.31, 1.745, 1.85) at the final time
level k = K as a screen grab from the Nexus One
implementation. Note that for this three–dimensional
configuration we can only afford (given phone memory
limitations) to render the field variable over a “small”
two–dimensional manifold: the outer surface of the do-
main.3

Finally, we consider the time–dependent incom-
pressible Navier-Stokes equations at relatively low
Reynolds number — here we employ methodology
from [17]. We consider pressure–driven flow through
a duct (x, y, z) ∈ [0, 3] × [0, 1]2 which contains a sta-
tionary solid sphere S of radius 0.1 with center (x =

1/2, y = 1/2, z = 1/2); our domain Ω is thus given by
[0, 3]× [0, 1]2 \ S . (In fact, we impose periodic bound-
ary conditions in x, and hence we implicitly consider

3In fact, we choose visualization vertices TN
V

corresponding to a
uniformly coarsened version of the outer surface of the truth mesh in
order to reduce the amount of data loaded onto the phone.

8

an infinitely long duct with a periodic array of spher-
ical “eddy promoters.”) We shall directly consider the
problem in nondimensional form; we choose a diffu-
sive scaling in which all lengths are measured in units
of the duct width (= height) H̃ and velocities are mea-
sured in units of ν̃/H̃, where ν̃ is the kinematic viscos-
ity.

In weak from we wish to find the velocity u(t; Π) ≡
(ux, uy, uz) ∈ X for 0 ≤ t ≤ t f = 0.25 such that∫

Ω

∂u
∂t · v + 1

2

∫
Ω

(v∇ · (u u) + vu · ∇u) =∫
Ω

Πvx −
∫

Ω
∇u · ∇v,∀v ∈ X, (11)

where X is the subspace of H1(Ω)3
per of functions which

are divergence–free and which vanish (in all compo-
nents) on all solid walls (note the per refers to 3–
periodicity in x). Here Π is a nondimensional negative
pressure gradient in the x–direction; the more usual
Reynolds number based on average velocity will scale
roughly as

√
Π. We choose P = 1 parameter, µ = Π,

and specify the parameter domain D ≡ [100, 700].
We consider two outputs corresponding to averages of
the streamwise (x) component of the velocity, ux, over
small cubes with side-length of 0.1 and with centers at
(x = 0.3, y = 1/2, z = 1/2) and (x = 0.7, y = 1/2, z =

0 10 20 30 40 50
10

−2

10
−1

10
0

10
1

N

ǫ N

Figure 2: Convergence of the POD-Greedy algorithm for the “Swiss
Cheese” problem.

Figure 3: Visualization of the “Swiss Cheese” solution field at the
final time for µ′ = (2, 2, 0.5, 2, 1.31, 1.745, 1.85).

1/2) respectively: the outputs can be interpreted as lo-
cal Reynolds numbers; the difference in these fore-aft
outputs can be interpreted as measure of the strength
of the nonlinear (inertial) effects. Finally, we select a
Crank-Nicolson temporal discretization with K = 100
time levels and a truth finite element approximation
space with N = 623, 632 degrees of freedom4. This
example is intended to illustrate the extension of the
RB formulation to (quadratic) nonlinearities.

This treatment of nonlinear parabolic PDEs builds
directly on the LTI parabolic foundation. There are,
however, significant complications in particular related
to the error bounds. First, the stability constants will be
significantly negative for higher Reynolds number —
indicating exponential growth of the error bounds in
time. (In some cases this exponential growth is “real”
and inescapable; in some cases this exponential growth
is an artifice of our energy arguments — and hence
could be mitigated.) We may thus not consider either
larger Reynolds numbers or larger final times t f

5. Sec-
ond, these stability constants, albeit pessimistic, will
be much more difficult to compute (via the SCM pro-
cedure) due to the non-LTI nature of the problem. And
third, the dual norm of the residual is much more diffi-
cult to compute; as a result, the storage for the Online
Dataset and the operation count for Evaluation will
now scale as Q2N4 and not Q2N2. (The hp approach
can effectively moderate this effect since the division
into parameter subdomains reduces N.)

In this case the truth calculation is expensive: each
evaluation µ→ uN (tk; µ), 0 ≤ k ≤ K, requires 57 wall–
clock minutes on Ranger with nproc = 256. The Offline
effort on Ranger requires just slightly over 12 wall-
clock hours to complete the POD–Greedy for Nmax =

12. In this case, most of the Offline effort is associated
with the truth snapshots; the “arg max” is relatively in-
expensive here since Nmax is small and also Ξtrain is
quite small.

We now proceed to the Online stage: we present in
Figures 4a and 4b the two outputs as a function of time
for µ′ = 100 and µ′ = 700, respectively, obtained
with N = 12 basis functions. These plots are screen
grabs from our Nexus One implementation — in each
case the output data is generated in roughly 2 seconds.
We observe that for µ′ = 700 the Reynolds based
on maximum velocity (at the final time) is roughly
30, indicating significant nonlinear effects; the con-
siderable fore–aft asymmetry at µ′ = 700 is further

4Note the latter is in fact based on a Taylor-Hood discretization
in which the pressure as Lagrange multiplier is introduced in the
usual fashion to impose the divergence-free condition. We choose
to write the weak form (11) in div-free form since this is our point
of departure for the RB approximation — in which all snapshots are
incompressible.

5Note for our example here in fact the stability constants are
positive: all disturbances monotically decay. Examples at higher
Reynolds number for which the stability constants are negative are
presented in [17].

9

indication of significant deviation from Stokes flow.
Again, for each of the two outputs we present both
sN(tk; µ′), 0 ≤ k ≤ K, and also lower and upper
bounds sN(tk; µ′) ± ∆s

N(tk; µ′), 0 ≤ k ≤ K; the truth
sN (tk; µ′), 0 ≤ k ≤ K, must reside within the bounds
provided. We also show plots of the x-component of
the velocity field from the Nexus One implementation
in Figure 5.6 In short, we have addressed Hilbert’s
25th Problem: “Solve the Navier-Stokes equations on
a phone.”

Finally, we note that although the emphasis in this
paper is on real-time deployed response, in fact our
approach is also appropriate for many–query studies

6We again choose visualization vertices TN
V

corresponding to a
P1 uniformly coarsened version of the mesh.

(a) (b)

Figure 4: Two RB output plot screenshots from the Nexus One
implementation for the Navier-Stokes problem: (a) µ′ = 100, (b)
µ′ = 700. The lines marked with × symbols are the RB outputs as
functions of time, and the corresponding RB output bounds are plot-
ted as solid lines. Note the change in vertical scale between (a) and
(b).

(a) (b)

Figure 5: Two plots of the x-component of the Navier-Stokes ve-
locity field from the Nexus One implementation: (a) µ′ = 100, (b)
µ′ = 700. Here we have taken an “L-shaped” manifold as the R vi-
sualization surface in order to show the velocity field in the domain
interior.

(and hence particularly appropriate for real-time many-
query applications such as parameter estimation). In
our Navier-Stokes example we observe that the break-
even point is 12 queries: after 12 queries the reduced
basis approach is much less expensive than the classi-
cal finite element approach even if we include in the
reduced basis budget the considerable Offline costs.

5. Acknowledgements

This research was supported by AFOSR Grant No.
FA9550-07-1-0425, OSD/AFOSR Grant No. FA9550-
09-1-0613, and also by the National Science Founda-
tion through TeraGrid resources provided by TACC
under Grant No. TG-ASC100016.

References

[1] Porsching, T., Lee, M.. The reduced-basis method for ini-
tial value problems. SIAM Journal of Numerical Analysis
1987;24:1277–1287.

[2] Fink, J., Rheinboldt, W.. On the error behavior of the reduced
basis technique for nonlinear finite element approximations. Z
Angew Math Mech 1983;63(1):21–28.

[3] Almroth, B., Stern, P., Brogan, F.. Automatic choice of
global shape functions in structural analysis. AIAA Journal
1978;16:525–528.

[4] Noor, A.. Recent advances in reduction methods for nonlinear
problems. Comput Struct 1981;13:31–44.

[5] Rozza, G., Huynh, D., Patera, A.. Reduced basis approxima-
tion and a posteriori error estimation for affinely parametrized
elliptic coercive partial differential equations application to
transport and continuum mechanics. Archives of Computa-
tional Methods in Engineering 2008;15:229–275.

[6] Barrault, M., Nguyen, N.C., Maday, Y., Patera, A.T..
An “empirical interpolation” method: Application to efficient
reduced-basis discretization of partial differential equations. C
R Acad Sci Paris, Série I 2004;339:667–672.

[7] Eftang, J.L., Grepl, M.A., Patera, A.T.. a posteriori error
bounds for the empirical interpolation method. CR Acad Sci-
Paris, Series I 2010;Submitted.

[8] Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.. A succes-
sive constraint linear optimization method for lower bounds of
parametric coercivity and inf-sup stability constants. CR Acad
Sci Paris Series I 2007;345:473–478.

[9] Haasdonk, B., Ohlberger, M.. Reduced basis method for
finite volume approximations of parametrized linear evolution
equations. M2AN Math Model Numer Anal 2008;42(2):277–
302.

[10] Knezevic, D.J., Peterson, J.W.. A high-performance par-
allel finite-element framework for the certified reduced basis
method. 2010. In preparation.

[11] Eftang, J., Patera, A., Rønquist, R.. An hp certified reduced
basis method for parametrized elliptic partial differential equa-
tions. SIAM Journal on Scientific Computing 2010;Accepted.

[12] Udawalpola, R., Berggren, M.. Optimization of an acoustic
horn with respect to efficiency and directivity. Int J Numer
Meth Eng 2008;73:1571–1606.

[13] Medvinsky, M., Turkel, E., Hetmaniuk, U.. Local absorbing
boundary conditions for elliptical shaped boundaries. J Com-
put Phys 2008;:8254–8267.

[14] Blackstock, D.T.. Fundamentals of Physical Acoustics. J.
Wiley and Sons, Inc.; 2000.

[15] Huynh, D., Knezevic, D., Chen, Y., Hesthaven, J.,
Patera, A.. A natural-norm successive constraint method
for inf-sup lower bounds. Comput Method Appl M
2010;Http://dx.doi.org/10.1016/j.cma.2010.02.011.

10

[16] Kirk, B.S., Peterson, J.W., Stogner, R.M., Carey, G.F..
libMesh: A C++ library for parallel adaptive mesh refine-
ment/coarsening simulations. Engineering with Computers
2006;23(3–4):237–254.

[17] Knezevic, D.J., Nguyen, N.C., Patera, A.T.. Reduced
basis approximation and a posteriori error estimation for
the parametrized unsteady boussinesq equations. Submitted.
M3AS.

11

