Anchor Points Matter in ANOVA Decomposition
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Abstract We focus on the analysis of variance (ANOVA) method for higmeh-
sional approximations employing the Dirac measure. Thithyared-ANOVA repre-
sentation converges exponentially fast for certain csggunctions but the er-
ror depends strongly on the anchor points. We employ the equtnef “weights
per dimension” to construct a theory that leads to the ogtamahor points. We
then present examples of a function approximation as wetiussserical solutions
of the stochastic advection equation up to 500 dimensioimg wscombination of
anchored-ANOVA and polynomial chaos expansions.

1 Introduction

We consider amN-dimensional functiorf, which can be decomposed as

N N
fOa o) =fot Y i)+ > Finjp(XinXio) -+ Fipjain Kigjz-in )
j1=1 i1<l2

(1)
where fq is a constant, ands are |S|-dimensional functions, called th&—order
terms. (HerelS| denotes the cardinality of the index &t This is the so-called
ANOVA model. Here we consider the domahh= [0, 1]N, in a tensor-product form.
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The terms in the ANOVA decomposition are computed as follows

fo= | f 00O (2a)

fs '/[O,l]N,‘a ((du(x-g) = 5 frixr). (2b)

We note that there are several forms of ANOVA decomposit&soaiated with
different measures. Here we focus on the one using the Dieasoredu(x) =
o(x—c)dx(c € [0,1]), which leads to thenchored-ANOVA decomposition. The
point “c”, which is often arbitrarily selected, is calledethanchor point”. Another
type is based on the Lebesgue measdrgx) = p(x)dx; this is the unanchored-
ANOVA decomposition. Seé]5] 1] for details.

All the distinct ANOVA terms are mutually orthogonal withgjgect to the corre-
sponding measure. Hence, for every tefigwith SC {1,2,--- /N}, we have

/ fs(xs)du(x)) =0, if jes
0]

and _
[ IS frx)du0 =0, it S£T.
JIo,1N

The order at which we truncate the ANOVA model is caléfictive dimension,
beyond which the difference between the ANOVA model and thedated expan-
sion in a certain measure is very small, de€ [10, 2112, 9. ot difficult to show
that the variance of can be a sum of variances of the ANOVA terms

2en _ | 2 o 2_ ' 2
o (f)_'/[a’b]Nf (x)dx — ( /[a’b}Nf(x)dx) " {12’2’““} /[a,bpa 12(xs)dxs. (3)

or in compact form
o’(f)y= 5 di(f). 4
0ASC{T 2, N}
The effective dimension of in the superposition sense is the smallest intelger
satisfying
od(f) = pa’(f), (5)
0<|S<ds
whereS C {1,2,---,N}. This implies that we will ignore terms in the ANONA
model corresponding to more thaginteractions. The effective dimension is mea-
sured in thed_>—norm. Note thap is a proportionality constant with @ p < 1 and
closeto 1, e.gp=0.99in [].
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2 Weights and Effective Dimension

In order to obtain an estimate of the effective dimensionadept proper weights,
which weight in some sense the contribution of each dimensidie concept of
weights here is analogous to the concept employed in amg\thie Quasi Monte
Carlo (QMC) method[[111]. In particular, the idea is to defipprpriate weights
so that their minimization also leads to minimization ofoesrin QMC, seell&.13].
In general, the weights should be in the interval of [0,1]atidition, most of the
weights should be less than one in order to have a low efiedimension for a
nominally high-dimensional function.

Assuming a function in tensor product form, the weight$ ifi] [irere determined
by the mean and the variance of the corresponding one-diorai$unctions. This
can be easily seen from the definition of the mean effectimeedsion[[9]. Specifi-
cally, given a tensor product function

the mean and the variance of the function are
-1
Ilk:/ fk(Xk)ka<°0, k:1,2,"'7N7
0
1
22— /O (fex) — i) 2dxe < o0, k=1,2,- N.
The ANOVA terms and the corresponding variances[are [9]:
fs = [ (f(x) — t) - [ ki, 1)
I [

€ k¢S
2 2 2
05(fs) = [T [ ] H&-
ke l!;ls

Then, the weights’s are defined as follows:
2
W = % if e #0fork=1,2,--- N.
k

In the unanchored ANOVA (i.e., using the Lebesgue meastire)effective di-
mension has a more clear meaning. The truncation error, Wieeeffective dimen-
sion isv, by definition, is estimated as

2

< @=p)(IF2=( [, o).

L2

51
[S<v

where we use the equalityf |> = (Jju f dx)2+ o?(f). Hence, we have
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2

<@-pa- 1y

f— fs

IS<v

N
P12 =a=p)( [, Fa02([] +w0-

k=1

(2)
Remark 2.1 From @), we have that

If=%s<v fsll _

N
T < |‘| 1+ w)~ 2<0.1,

by choosing p=0.99. In fact, when p is chosen as 0.99 the effective dimension is
not always an integer. The estimate above corresponds twdrs case and, in fact,
the error can be far better; segl[9] for specific examples.

Remark 2.2 From the definition of weights, we have that

N
Hf— / f dx)2 Wmszmﬂyk.
According to(@),
N N
DIDN I LSkl CRTRE 3

As already mentioned, when a function is of low effective eirsion, the dom-
inating weights are much smaller than one. In factuif£ 0 andy < 1 for all
k=1,2,--- N, the mean effective dimension [< [9]

N Y N 1
2k=1%+1 . N— i1 Yitl

ds = (4)

N 1 N 1 -
1- nk:l Vit L 1- |_|k:1 W+1

While the previous discussion concerns the ANOVA versiotinlebesque mea-
sure, it is by analogy that we can extend the concept of weitghthe anchored-
ANOVA as well. To this end, we define the weights usingltffe-norm, as follows:

_ Ifie=f(edlles
[ fi(c)l

Lemma 2.3 Assuming that the anchored-ANOVA is truncated afithh order, and
that py satisfies

, when f(c)#£0. (5)

N
n]:;mémuw: (1-py )(k 1(1+ W) —1).

Then, the relative error in £—=norm can be estimated as

P
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f— v fsll; w N N f
I |sz|L sl < (1 ) ([ w- [fi()|

)- (6)

Also, for one-signed functions, if the anchored points (c1,Cp,---,CN) are se-
lected such that

maxo 1 fi(X) —minjo 1 k(%)
maxg 1) fic () +minjg 1) (k)

Then,y = , and it minimizes the weights defined[).

The minimized weights, in turn, minimize the error estinmatée last lemma.

Proof. Recalling the results from the ANOVA using Lebesgue measuitie the
same weights, we have

If =S5 fslle  [If=Sisco fllo ORs | fi(o)]

Il My | ()| ]
< N | ()|
< W( )
o2 2 LT
A N ()|

1-py T4y)—1
<( p)(kl:ll( + i) — 1)(

ket il ™

This proves the error estimate. The following will compléhe proof of how to
minimize weights.

Suppose thafy, does not change sign over the interj@l1]. Without loss of
generality, letfy > 0. Denote the maximum and the minimumfpfby My andmy,
respectively, and assume thiafcy) = axMy + (1 — ax)mg whereay € [0,1]. Then

[k = fi(C) [l = MaXxMi — fi(cx), fi(ck) — M) = (Mk — me) max(1— ai, ),
and the weight is

= Tkl (M — M) max(1— oy, ax)
[ fi(c) M+ (1—agme

Let us consider the function of ay) = % whereay € [0,1], y=

Mﬂk € (0,1) and see how to choosg. Notice that

U __ >0 ifoye(d,1).

oyl g R
g'(ax) = { ritagy? <0 ifake (0,3),
(acH(I-ay)y)?

From this we know thag(3) reaches the minimum af{ ax) with ay € (0,1). Then,
1 1 {‘%
= 3, = =) = < 1

Q
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Actually, according to the definition of weights,

N
(k|'|1 1+ %) —

N | fi(c)| + || fk —

B kGl = [f(c)]
rl A I'L Tl

If ak>%,
N N (e
1+w—1
=0 e
_ lﬂl oMy + (1 — oM+ (M — m) max(1 — a, ax) lﬂl oMy + (1 — a)m
k=1 My k=1 My
N N
My My My My
— I (21— Ty 1 Ty 1- %4 Ty,
k:1( k( Mk) Mk) Dl( k( Mk) Mk)

Hence, the first term in the last inequality increases fast@n the last term, since
2ak(1— ) + g > k(1 — ) + < for ay > Il <i,

N N f N
M -0(] KOl 3 [ (a1 + 7).

k=1 H kaL"0 k=1 Mk

Thusay = % is the best choice when it minimizes the error estimate.dédiere the
choice ofay = % also minimizes the weight. This ends the proof.

Remark 2.4 Weights and corresponding ancor points can also be defindgden
L1-norm using appropriate quadrature formulas, e.g. $ée [6].

3 Numerical Examples

Here we present two examples, first in approximating a hiigiedsional function
and subsequently in solving the stochastic advection exuat

Example 1:We consider the Genz functiofl [4} = |'|’J-\‘:1exp(—cj X —wj|)
with the parameters; = exp(—0.2j) andw; following a uniform distribution.

w = (0.6951060.8514630.4133550.4101780.226185
0.70780.4787560.1830780.07243320.483279

The centered point refers ((%, %, e 2) while the optimal point is the point cho-
sen according to the LemnhaP.3. Both results in table 1 detraiasexponential
accuracy in terms of the truncation dimension but using fhtémal anchor points
leads to accuracy close to three orders better than usingetitered point.

Example 2: Next we consider the stochastic advection equation
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truncation ordecentered poinbptimal point
1 6.6207<1072[3.7949<1073
5.2552<10 3[8.8265¢<10 °
2.3796<10°%[1.2680<10°°
6.2412<10°%[1.1568<10°8
9.0972¢<10°8[6.6648<10~ 1

al Bl wN

Table 1 Errorin the meanN = 10.

L=1. Exaci(E) vs. ANOVA method(A) with M=4,u=8 and ¢, L=1. Exact(E) vs. ANOVA method(A) with M=4,1=8 and c,

E
o Av=1
Av=2

o
o
o
oxo+
>rrem

Mean(u)

Fig. 1 Mean solution using the optimum anchor pain{left) and a different point; (right). Here
M=4;L=1.

Jou Jou

ot +V(t,£)0x =0

in the interval [—1,1] with periodic boundary conditions and initial condition
u(x,t = 0) = sin(m(x+ 1)). The advection velocity is a stochastic process with
zero mean and is represented using a Karhunen-Loeve egpang.V(t,§) =
M o VA (t) &, with & being uncorrelated and also independent variables fol-
lowing a uniform distribution. The eigenpaifdy, ¢k) are derived from the co-
variance kernel of the form eXp|ty —t|/L], whereL is the correlation length.
Here we consider three values bfcorresponding to different truncations, i.e.,
(L,M) = (1,4);(0.1,10); (0.005;500 selected so that 90% of the energy is cap-
tured by the coefficients of the truncated expansion. Inithelations we employ a
Fourier-collocation in space and a probabilistic colloamamethod in random space
using Legendre-chaos (8th-order).

In figure 1 we plot the mean solutiontat 0.5 in order to compare the effect of
the anchor point on the convergence of the ANOVA expansionséé that for the
optimum pointc; = (0,0,...,0) the solution converges to the exact solution when
v = 2 but for another point, = (1,1,...,1) the solution converges to the exact
solution only ifv = M = 4, i.e., for the full expansion. Here the exact solution is
computed as irf]7]. Using the optimum point we can now varycthreelation length
L and produce accurate solutions in the high-dimensiona&lesfma small values of
L and up taM = 500 dimensions as shown in figure 2.
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Fig.
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Exact(E) vs. ANOVA(A) at t=0.5

Exact(E) vs. ANOVA(A) at t=0.5

EL=1
- - -EL=01
—— EiL=0.005

o AL=1,M=4
X AL=0.LM=10 ||
o AL=0.005, M=500

2 Mean solution (left) and Variance (right) using the optimanchor pointc; for different

values of the correlation lengti. & 1,0.1,0.005) and corresponding truncation dimension=¢
2,2,1).
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