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The Dual Role of Convection in 3D
Navier-Stokes Equations
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Abstract

We investigate the dual role of convection on the large tirakavior of the
3D incompressible Navier-Stokes equations. On the one,l@myection is
responsible for generating small scales dynamically. @nother hand, con-
vection may play a stabilizing role in potentially deplgtinonlinear vortex
stretching for certain flow geometry. Our study is centeratiad a 3D model
that was recently proposed by Hou and Lei in [23] for axisyrtrioe3D in-
compressible Navier-Stokes equations with swirl. This etad derived by
neglecting the convection term from the reformulated Na@iekes equations
and shares many properties with the 3D incompressible N&takes equa-
tions. In this paper, we review some of the recent progressudying the
singularity formation of this 3D model and how convectionynikestroy the
mechanism that leads to singularity formation in the 3D nhode

Key words: Finite time singularities, nonlinear nonlocal systentgam-
pressible Navier-Stokes equations.

1.1 Introduction

Whether the 3D incompressible Navier-Stokes equations eaelap a finite
time singularity from smooth initial data with finite enerigyone of the seven
Millennium problems posted by the Clay Mathematical Ing&t[16]. This
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problem is challenging because the vortex stretching neatity is super-
critical for the 3D Navier-Stokes equation. Conventionaidtional analysis
based on energy type estimates fails to provide a definitwems this prob-
lem. Global regularity results are obtained only underasersmallness as-
sumptions on the initial data or the solution itself. Duette incompressibility
condition, the convection term seems to be neutrally stiildee tries to es-
timate thelLP (1 < p < o) norm of the vorticity field. As a result, the main
effort has been to use thefilision term to control the nonlinear vortex stretch-
ing term by difusion without making use of the convection term explicitly.

In [23], Hou and Lei investigated the role of convection bysucting a
new 3D model for axisymmetric 3D incompressible Navierktequations
with swirl. The 3D model is derived based on the reformuldtedier-Stokes
equation given below

AUy + U (Up)y + UP(Up), = (02 + ?é)r + 02Uy + 20,01 Us, (1.1)
3

dw1 + U (w1)r + U (w1), = V(B2 + Far + 2wy + 0 ()2, (1.2)

-(0% + ?ar + 0 = w1, (1.3)

whereu; = U/r, w1 = /1, g1 = y?/r. Herel’, ? y? are the angular veloc-
ity, angular vorticity and angular stream-function, regpely. The radial ve-
locity u” and the axial velocity? are given byu" = —r (1), andu? = (ry), /r.
The 3D model of Hou-Lei is obtained by simply dropping theastion term
in the reformulated Navier-Stokes equations (1.1)—(B)ch is given by the
following nonlinear nonlocal system

3
Ay = v(0? + Faf + 02)uy + 20,01y, (1.4)
3
Awr = V(0% + Faf + 02w + 05((U1)?), (1.5)
3
(07 + TOr+ W1 = w1 (1.6)

Note that (1.4)—(1.6) is already a closed system. This mpoksderves al-
most all the properties of the full 3D Navier-Stokes equaijdncluding the
energy identity for smooth solutions of the 3D model, the-btowup crite-
rion of Beale-Kato-Majda type [1], the non-blowup critetiof Prodi-Serrin
type [34, 35], and the partial regularity result [24] whishein analogue of the
well-known Cdtarelli-Kohn-Nirenberg theory [2] for the full Navier-Stek
equations.

One of the main findings of [23] is that the 3D model (1.4)- hés a very



The Dual Role of Convection in 3D Navier-Stokes Equations 3

different behavior from that of the full Navier-Stokes equatiafthough it
shares many properties with those of the Navier-Stokestieaqisa In [23], the
authors presented numerical evidence which supports ttiennthat the 3D
model may develop a potential finite time singularity. Hoae\the Navier-
Stokes equations with the same initial data seem to have pletety diferent
behavior.

In a recent paper [26], we rigorously proved the finite timegsiarity for-
mation of this 3D model for a class of initial boundary valuelgems with
smooth initial data of finite energy. The analysis of the éinitne singularity
for the 3D model was rather subtle. Currently, there is ndesyatic method
of analysis available to study singularity formation of anlieear nonlocal
system. In [26], we introduced afffective method of analysis to study singu-
larity formation of this nonlinear nonlocal multi-dimeosial system. The ini-
tial boundary value problem considered in [26] uses a mixeitiet Robin
boundary condition. The local well-posedness of this miixetial boundary
problem is nontrivial. In this paper, we provide a rigorousgd of the local
well-posedness of the 3D model with this mixed Dirichlet Roboundary
problem.

We remark that formation of singularities for various modguations for
the 3D Euler equations or the surface quasi-geostrophiatexuhas been in-
vestigated by Constantin-Lax-Majda [9], Constantin [5¢@&egorio [12, 13],
Cordoba-Cordoba-Fontelos [8], Chae-Cordoba-Cordolaefas [4], and Li-
Rodrigo [30]. In a recent paper related to the present ona, Hip Shi, Wang
and Yu [25] have proved the finite time singularity of a onménsional non-
linear nonlocal system:

U =2uv, v =H(U), (1.7)

whereH is the Hilbert transform. This is a simplified system of thegimral
3D model along the symmetry axis. Harplays the same role a&s. The sin-
gularity of this nonlocal system is remarkably similar tattof the 3D model.
The work of Hou and Lei [23] was motivated by the recent stuidyt@u and
Li in [22], where the authors studied the stabilizinfeet of convection via a
new 1D model. They proved dynamic stability of this 1D modgldxploit-
ing the stabilizing &ect of convection and constructing a Lyapunov function.
A surprising result from their study is that there is a bdautancellation
between the convection term and the nonlinear stretchimngwhen one con-
structs an appropriate Lyapunov function. This Lyapunainesge gives rise to
a global pointwise estimate for the derivatives of the wittiin their model.
We would like to emphasize that the study of [22, 23] is based peduced
model for certain flow geometry. It is premature to concluu the convection
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term could lead to depletion of singularity of the Navieol&s equations in
general. Convection term may act as a destabilizing terna fdifferent flow
geometry. A main message from this line of study is that thevection term
carries important physical information. We need to takedbevection term
into consideration in an essential way in our analysis of Nlawier-Stokes
equations.

The rest of the paper is organized as follows. In Section 2jis@iss the role
of convection from the Lagrangian perspective and presemiesnumerical
evidence that the local geometric regularity of the vorie®d may deplete the
nonlinear vortex stretching dynamically. In Section 3, meeistigate the role of
convection by studying the potential singular behaviohef3D model which
neglects convection in the reformulated Navier-Stokesagon. We present
some theoretical results on finite time singularity forroatof the 3D model
in Section 4. Finally we present the analysis of the localypesedness of the
3D model with the mixed Dirichlet Robin boundary conditianSection 5.

1.2 The role of convection from the Lagrangian perspective

Due to the supercritical nature of the nonlinearity of the RBvier-Stokes
equations, the 3D Navier-Stokes equations with largeainitata are convec-
tion dominated. Thus the understanding of whether the spording 3D Eu-
ler equations would develop a finite time blowup could shexfuldight on the
global regularity of the Navier-Stokes equations.

We consider the 3D Euler equations in the vorticity form. Vidéenthat we
can rewrite the vorticity equation in a commutator form (dkie@derivative) as
follows:

wi+U- Vo - (w-V)u=0. (1.8)
Through this commutator formulation, we can see that thevextion term
may have the potential to dynamically cancel or weaken thgexatretching
term under certain geometric regularity conditions.

Another way to realize the importance of convection is tothsd agrangian
formulation of the vorticity equation. When we consider the tterms to-
gether, we preserve the Lagrangian structure of the sal{®2]:

w(X(a,1),t) = X, (a, Hwo(a), (1.9)

whereX, = % andX(a, t) is the flow map:

c;—i((cv, t) = u(X(e, 1),t), X(,0)=a. (1.10)
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We believe that (1.9) is an important signature of the 3D inpressible Euler
equation. An immediate consequence of (1.9) is that vytiotreases in time
only through the dynamic deformation of the Lagrangian floapmwhich
is volume preserving, i.e. d&f{(a,t)) = 1. Thus, as vorticity increases dy-
namically, the parallelepiped spanned by the three vea@sss X,,, Xu,), will
experience severe deformation and become flattened dyaklyn®uch defor-
mation tends to weaken the nonlinearity of vortex stretgliipnamically.

1.2.1 A Brief Review

In this subsection, we give a brief review of some of the tedoal and com-
putational studies of the 3D Euler equation. Due to the féiamadratic non-
linearity in vortex stretching, classical solutions of 82 Euler equation are
known to exist only for a short time [32]. One of the most wallbwn non-
blowup results on the 3D Euler equations is due to Beale-Kédgma [1] who
showed that the solution of the 3D Euler equations blows Gpigand only if
fOT llwlle (t) dt = co, Wherew is vorticity.

There have been some interesting recent theoretical gevelats. In partic-
ular, Constantin-Héerman-Majda [6] showed that local geometric regularity
of the unit vorticity vector can lead to depletion of the wexrstretching. De-
noteé = w/|w| as the unit vorticity vector and the velocity field. Roughly
speaking, Constantin-HEerman-Majda proved that if (1)ull. is bounded in
a O(1) region containing the maximum vorticity, and (fgnvgnfodr is uni-
formly bounded fott < T, then the solution of the 3D Euler equations remains
regularupta =T.

There has been considerabl&oet put into computing a finite time singu-
larity of the 3D Euler equation. The finite time collapse obtanti-parallel
vortex tubes by R. Kerr [28, 29] has received a lot of attentit/ith resolution
of order 512 256x 192, his computations showed that the maximum vorticity
blows up likeO((T —t)~1) with T = 18.9. In his subsequent paper [29], Kerr
applied a high wave number filter to the data obtained in higiral com-
putations to “remove the noise that masked the structureatriier graphics”
presented in [28]. The singularity time was revised te 18.7. Kerr’s blowup
scenario is consistent with the Beale-Kato-Majda non-bloweriterion [1] and
the Constantin-Héerman-Majda non-blowup criterion [6]. It is worth noting
that there is still a considerable gap between the predisiegllarity time
T = 187 and the final tim¢ = 17 of Kerr's original computations which he
used as the primary evidence for the finite time singularity.
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1.2.2 The local non-blowup criteria of Deng-Hou-Yu [10, 11]

Motivated by the result of [6], Deng, Hou and Yu [10] have am¢a a sharper
non-blowup condition which uses a Lagrangian approach laed/ery local-
ized information of the vortex lines. More specifically, yfessume that at each
time t there exists some vortex line segmépbn which the local maximum
vorticity is comparable to the global maximum vorticity.rkher, they denote
L(t) as the arclength of;, n the unit normal vector of;, and« the curva-
ture of Ly. If (1) max_ (lu - & +|u-nf) < Cy(T - t) with A < 1, and (2)
CL(T - 1)B < L(t) < Co/ max, (x|, |V - &) for 0 <t < T, then they show that
the solution of the 3D Euler equations remains regular up=oT provided
thatA+ B < 1.

In Kerr's computations, the first condition of Deng-Hou-¥uion-blowup
criterion is satisfied withA = 1/2 if we use||ull., < C(T —t)"¥2 as alleged in
[29]. Kerr's computations suggested thaandV - £ are bounded b((T —
t)~Y/2) in the inner region of sizeT(—t)Y2x (T -t)Y2x(T —t) [29]. Moreover, the
length of the vortex tube in the inner region is of ordBk¢)Y/2. If we choose a
vortex line segment of lengtA -t)Y/2 (i.e. B = 1/2), then the second condition
is satisfied. However, this would violate the conditibr- B < 1. Thus Kerr’s
computations fall into the critical case of the non-blowujpecion of [10]. In
a subsequent paper [11], Deng-Hou-Yu improved the non4gbovondition to
include the critical casé + B = 1, with some additional constraint on the
scaling constants.

We remark that in a recent paper [27], Hou and Shi introducdifarent
method of analysis to study the non-blowup criterion of tBeEuler and the
SQG model. By performing estimates on the integral of th@laits value of
vorticity along a local vortex line segment, they estaldisla relatively sharp
dynamic growth estimate of maximum vorticity under somedragsumptions
on the local geometric regularity of the vorticity vectondér some additional
assumption on the vorticity field, which seems to be consistéth the com-
putational results of [19], they proved that the maximuntiedy can not grow
faster than double exponential in time. This analysis eld¢o some extent the
earlier results by Cordoba-fferman [7] and Deng-Hou-Yu [10, 11].

1.2.3 Computing potentially singular solutions using
pseudo-spectral methods

Itis an extremely challenging task to compute a potenti&Esingularity nu-
merically. First of all, it requires a tremendous amountwierical resolution
in order to capture the nearly singular behavior of the Eabprations. Sec-
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ondly, one must perform a careful convergence study. Iskg/rio interpret the
blowup of an under-resolved computation as evidence offiimite singular-
ities for the 3D Euler equations. Thirdly, we need to vakdtte asymptotic
blowup rate, i.e. is the blowup rafg|| .~ ~ ﬁ asymptotically valid as
t — T? If a numerical solution is well resolved only upTg and there is still
anO(1) gap betweefly and the predicted singularity tinlg then one can not
apply the Beale-Kato-Majda criterion [1] to this extragelhsingularity since
the most significant contribution tﬁ]T lw(t)]|.~dt comes from the time interval
[To, T]. Butironically there is no accuracy in the extrapolatetlison in this
time interval if (T — To) = O(1). Finally, the blowup rate of the numerical so-
lution must be consistent with other non-blowup criterial[8, 11]. Guidance
from analysis is clearly needed.

In [19], Hou and Li performed high resolution computatiofithe 3D Euler
equations using the two-antiparallel vortex tubes initiata. They used the
same initial condition whose analytic formula was given Bg][ They used
two different pseudo-spectral methods. The first pseudo-speatthbohused
the standard /3 de-aliasing rule to remove the aliasing error. For the iséco
pseudo-spectral method, they used a novel 36th order Famieothing to
remove the aliasing error. In order to perform a careful ltegm study, they
used a sequence of resolutions: 36812 x 1536, 1024x 768 x 2048 and
1536x 1024x 3072 in their computations. They computed the solution up to
t = 19, beyond the alleged singularity tirie= 18.7 by Kerr [29].

We first illustrate the dynamic evolution of the vortex tubEgure 1.2 de-
scribes the isosurface of the 3D vortex tubes at0 andt = 6, respectively.
As we can see, the two initial vortex tubes are very smoottrelatively sym-
metric. As time evolves, the two vortex tubes approach e#twér@and become
flattened dynamically. By timé = 6 there is already a significant flattening
near the center of the tubes. In Figure 1.3 we plot the local@iex structure
of the upper vortex tube at= 17. By this time the vortex tube has turned into a
thin vortex sheet with rapidly decreasing thickness. Wespolesthat the vortex
lines become relatively straight and the vortex sheet tgdlsear the left edge
of the sheet.

We now perform a convergence study for the two numerical oustlising a
sequence of resolutions. For the Fourier smoothing methedise the resolu-
tions 768<512x1536, 1024 768x 2048, and 15361024x 3072, respectively,
whereas the /3 de-aliasing method uses the resolutions %1284 x 1024,
768x 512x 1536 and 1024 768x 2048, respectively.

In Figure 1.1 we compare the Fourier spectra of the energgirndd by us-
ing the 23 de-aliasing method with those obtained by the Fourier shiog
method. For a fixed resolution 102468x 2048, the Fourier spectra obtained
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Figure 1.1 The energy spectra versus wave numbers. The dasheaiid
dashed-dotted lines are the energy spectra with the resolutionx10g8 x
2048 using the /3 de-aliasing rule and Fourier smoothing, respectively. The
times for the spectra lines aretat 15,16, 17, 18, 19, respectively.

by the Fourier smoothing method retain moféeetive Fourier modes than
those obtained by the/2 de-aliasing method and does not give the spurious
oscillations in the Fourier spectra. In comparison, therleospectra obtained
by the 23 de-aliasing method produce some spurious oscillatioasthe 23
cut-of point. It is important to emphasize that the Fourier smawhnethod
conserves the total energy extremely well. More studielsidticg the conver-
gence of the enstrophy spectra can be found in [19, 20, 21].

To gain more understanding of the nature of the dynamic drawtorticity,
we examine the degree of nonlinearity in the vortex streggérm. In Figure
1.4 we plot the quantityl¢ - Vu - w||. as a function of time. If the maximum
vorticity indeed blew up likeO((T - t)71), as alleged in [28], this quantity
should have grown quadratically as a function of maximuntieity. We find
that there is tremendous cancellation in this vortex dtiatcterm. Its growth
rate is bounded b€||d||. l09(||d|l«), See Figure 1.4. It is easy to show that if
I - VU - 0o < Clld||e 109(l|@]e), then the maximum vorticity can not grow
faster than doubly exponential in time.

In the right plot of Figure 1.4, we plot the double logarithfritte maximum
vorticity as a function of time. We observe that the maximuorticity indeed
does not grow faster than doubly exponential in time. We l#s®e examined
the growth rate of maximum vorticity by extracting the datanfi Kerr's paper
[28]. We find that log(lod(w|l.)) basically scales linearly with respect to
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Figure 1.2 The 3D view of the vortex tube foe 0 andt = 6. The tube is the
isosurface at 60% of the maximum vorticity. The ribbons on the symmetry
plane are the contours at otheffdrent values.

from 14 < t < 17.5 when his computations are still reasonably resolved. This
implies that the maximum vorticity up to= 17.5 in Kerr's computations does

not grow faster than doubly exponential in time, which issistent with our
conclusion.
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Figure 1.3 The local 3D vortex structures of the upper vortex tube aridx
lines around the maximum vorticity &t 17.

1.3 Numerical evidence of finite time singularity of the 3D
model

As we mentioned in the Introduction, the 3D model shares npaoperties
with the full 3D Navier-Stokes equations at the theoretiegél. In this sec-
tion, we will demonstrate that the 3D model without the cartivm term has
a very diferent behavior from the full Navier-Stokes equation. Intipatar,
we present numerical evidence based on the computatior28pfHat seems
to suggest that the 3D model develops a potential finite timguarity from
smooth initial data with finite energy. However, the meckanior developing
a finite time singularity of the 3D model seems to be destrayken we add
the convection term back to the 3D model. This illustratesithportant role
played by convection from a filerent perspective.

By exploiting the axisymmetric geometry of the problem, Howl Lei ob-
tained a very fiicient adaptive solver withfiective local resolutions of order
4096. More specifically, since the potential singularity muspegr along the
symmetry axis at = 0, they used the following coordinate transformation
along ther-direction to achieve the adaptivity by clustering the goimints
nearr = 0:

r = f(e) = a - 0.9sin@a)/x. (1.11)
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Figure 1.4 Left plot: Study of the vortex stretching term in time, resolution
1536x 1024x 3072. The facl¢ - Vu - w| < ¢;|w| log|w| plusglwl =¢-Vu-w
implies|w| bounded by doubly exponential. Right plot: log l@gj|., vs time.

With this level of resolution, they obtained an excellenfditthe asymptotic
blowup rate of maximum axial vorticity.
The initial condition we consider in our numerical compiatas is given by

u(z1,0) = (1 + sin(4r2)(r? - 1)?°(r? — 1.2)*°, (1.12)
Y1(zr,0) =0, (1.13)
wi(zr,0)=0. (1.14)
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A second order finite dierence discretization is used in space, and the classical
fourth order Runge-Kutta method is used to discretize iRtim

In the following, we present numerical evidence which se#msupport
the notion thati; may develop a potential finite time singularity for the iaiti
condition we consider. In Figure 1.5 we plot the maximunupfn time over
the time interval [0 0.021] using the adaptive mesh method with= 4096
andN, = 400. The time step is chosen to he= 2.5 x 10~’. We observe that
lullo €Xperiences a very rapid growth in time after 0.02. In Figure 1.5 (the
right plot), we also plot log(lodi(||~)) as a function of time. It is clear that
[lurllo grows much faster than double exponential in time.

To obtain further evidence for a potential finite time siragity, we study the
asymptotic growth rate dfu; ]l in time. We look for a finite time singularity
of the form:

C
(T-t

lluglleo ~ (1.15)
We find that the inverse dfu;||., is almost a perfect linear function of time,
see Figure 1.6. By using a least square fit of the invergleidif,, we find the
best fit fora, the potential singularity tim@ and the constar€. In Figure
1.6 (the left plot), we plotju;||Z} as a function of time. We can see that the
agreement between the computed solution Wth< N, = 4096x 400 and
the fitted solution is almost perfect. In the right box of Figu..6, we plot
lu1lle computed by our adaptive method against the forn€fifT — t) with

T = 0.02109 andC = 8.20348. The two curves are almost indistinguishable
during the final stage of the computation frém 0.018 tot = 0.021. Note that
u; has the same scaling as the axial vorticity. ThusQfi (T —t)) blowup rate

of u; is consistent with the non-blowup criterion of Beale-Kadajda type.

We present the 3D view af; as a function of andz in Figures 1.7 and
1.8. We note thati; is symmetric with respect te = 0.375 andw; is anti-
symmetric with respect ta = 0.375. The support of the solutiam in the
most singular region is isotropic and appears to be localfysmilar.

To study the dynamic alignment of the vortex stretching tenm plot the
solutionu; on top ofy, ; along the symmetry axis= 0 at =0.021 in Figure
1.9. We observe that there is a significant overlap betweesupport of the
maximum ofu; and that of the maximum of; ;. Moreover, the solution; has
a strong alignment witky1 , near the region of the maximum af. The local
alignment between; andy, induces a strong nonlinearity on the right hand
side of theu; equation. This strong alignment betwagrandy , is the main
mechanism for the potential finite time blowup of the 3D model

It is interesting to see how convection may change the dynafignment
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Figure 1.5 Left figure:|uill. as a function of time over the interval

[0, 0.021]. The right figure: log(lodi{(i]l.)) as a function of time over

the same interval. The solution is computed by the adaptive mesh with

N, = 4096 N; = 400,At = 25x 1077, v = 0.001.

of the vortex stretching term in the 3D model. We add the cotive term
back to the 3D model and use the solution of the 3D mod¢l-at0.02 as
the initial condition for the full Navier-Stokes equatioWge observe that the
local alignment between; andy is destroyed for the full Navier-Stokes
equations. As a result, the solution becomes defocusednanotker along the
symmetry axis, see Figure 1.10. As time evolves, the twodimgucenters ap-
proach each other. This process creates a strong integral dathogonal to
the z-axis. The solution forms a jet that moves away from the sytmyrexis
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Figure 1.6 The left plot: The inverse dfn|l. (dark) versus the asymp-
totic fit (gray) for the viscous model. The right pldti ||, (dark) versus the
asymptotic fit (gray). The asymptotic fit is of the foruy||} =~ (TC—“) with

T = 0.02109 andC = 8.20348. The solution is computed by an adaptive
mesh withN, = 4096,N, = 400,At = 25x 1077, v = 0.001.

(thez-axis) and generates many interesting vortex structungth&Cadtarelli-
Kohn-Nirenberg theory, the singularity of the 3D axisymriteNavier-Stokes
equations must be along the symmetry axis. The fact that tst smgular part
of the solution moves away from the symmetry axis suggesistkie mech-
anism for generating the finite time singularity of the 3D rabkas been de-
stroyed by the inclusion of the convection term for thisialicondition.
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Figure 1.7 The 3D view ofi; att = 0.02 for the viscous model computed by
the adaptive mesh witN, = 4096 N, = 400,At = 25x 107, v = 0.001.

1.4 Finite time singularities of the 3D model

The numerical evidence of finite time blow-up of the 3D modetirates us

to prove finite time singularities of the 3D model rigoroustya recent paper
[26], we developed a new method of analysis and proved riggdyahat the

3D model develops finite time singularities for a class di@hboundary value
problems with smooth initial data of finite energy. In our lgse, we consid-

ered the initial boundary value problem of the generalizeariddel which has
the following form (we drop the subscript 1 and substitut&)into (1.5)):

U = 22U, (1.16)
—Ayr = (), (1.17)

whereA is ann-dimensional Laplace operator witk, @) = (X1, X2, ..., Xn-1, 2).
Our results apply to any dimension greater than or equal éo(itve 2). Here
we only present our results far= 3. We consider the generalized 3D model in
both a bounded domain and in a semi-infinite domain with a chReichlet
Robin boundary condition.
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x10

Figure 1.8 The 3D view ofi; att = 0.021 for the viscous model computed
by the adaptive mesh witN, = 4096 N, = 400,At = 25x 107, v = 0.001.

1.4.1 Summary of the main result

In [26], we proved rigorously the following finite time blowup result for the
3D inviscid model.

Theorem 1.4.1 LetQy = (0,a8) x (0,a), Q = Qy x (0,b) andT" = {(X,2) | x €
Qy, z = 0}. Assume that the initial conditiong @and ¢ satisfy ¢ > 0 for
(X,2) € Q, Uglga = 0, Uy € H3(Q), Yo € H3(Q) andy satisfies (1.18). More-
over, we assume thatsatisfies the following mixed Dirichlet Robin boundary
conditions:

lpl(’)Q\r = 05 (‘ﬂz +ﬁW)|I‘ = 0’ (118)

; V2r (1+e2b/a . (ol gl o\ - «
with 8 > 2% (F5mz). Defineg(x, %,,2) = (S5 sin(%) sin(22)

wherea satisfie < « < V2r/a andz(g) % = . If ug andy satisfy
the following condition:

f(log Ug)pdxdz > 0, f¢02¢dxdz> 0, (1.19)
Q Q
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Figure 1.9u; (dark) versusy,, (gray) of the viscous model along the sym-
metry axisr = 0. The left figure corresponds to= 0.02. The right fig-
ure corresponds tb= 0.021. Adaptive mesh computation witly = 4096,

N, = 400,At = 25x 1077, v = 0.001.

then the solution of the 3D inviscid model (1.16)—(1.17) délvelop a finite
time singularity in the K norm.

1.4.2 Outline of the singularity analysis

We prove the finite time singularity result of the 3D model mntadiction.
The analysis uses the local well-posedness result of the 88ehwith the
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above mixed Dirichlet Robin boundary condition, which vk established
in Section 5. By the local well-posedness result, we know tihere exists a
finite time T > 0 such that the initial boundary value problem (1.16)—(L.17
with boundary condition given in the above theorem has ausgmooth so-
lution with u € CY([0, T), H3(Q)) andy € C([0,T), H3(Q)). Let Ty, be the
largest time such that the system (1.16)—(1.17) with ihitieditionug, ¥ has

a smooth solution witlu € C1([0, Tp,); H2(Q)) andy € C1([0, Tp); H3(Q)). We
claim thatTy, < co. We prove this by contradiction.

Suppose thal, = . This means that for the given initial datig, v, the
system (1.16)—(1.17) has a globally smooth solutioa C*([0, «0); H?(Q2))
andy € CY([0, 0); H3(Q)). Note thatu|sn = O as long as the solution remains
smooth.

There are several important ingredients in our analysis.firht one is that
we reformulate theli-equation and use log) as the new variable. With this
reformulation, the right hand side of the reformulateeiquation becomes lin-
ear. Such reformulation is possible singe> 0 in Q implies thatu > 0 in Q
as long as the solution remains smooth. We now work with tfermeulated
system given below:

(logW), = 27, (X2 €Q, (1.20)
—Ayr = (1) . (1.21)

z

The second ingredient is to find an appropriate test funetiand work with
the weak formulation of (1.20)—(1.21). This test functibis chosen as a posi-
tive and smooth eigen-function {a that satisfies the following two conditions
simultaneously:

—Ap = 11¢p, 32 = 1, forsomeld;, 1,>0, (x,2eQ. (1.22)

Now we multiply ¢ to (1.20) andg, to (1.21) and integrate oveR. Upon
performing integration by parts, we obtain by using (1.22)t

d f (logu)pdxdz = 2 f Yppdxdz, (1.23)

dt Jgo Q

/llg f Yppdxdz = Ap f u?pdxdz. (1.24)
dt Jo Q

It is interesting to note that all the boundary terms resglfrom integration
by parts vanish due to the boundary conditionyothe property of our eigen-
functiong, the specific choice af defined in Theorem 4.1. We have also used
the fact thatu|,—o = ul,-, = 0. Combining (1.24) with (1.23), we obtain our
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crucial blow-up estimate:

d2

T fg (log u)gdxdz = 2/1—/112 fg u’pdxdz (1.25)

Further, we note that

f log(u)pdxdz < f (log(u))*¢dxdz < f ugdxdz
Q Q Q

12 V2 o 12
< ( f ¢dxdz) ( f ¢u2dxdz) = ( f ¢u2dxdz) . (1.26)
Q Q T \/a Q

From (1.25) and (1.26), we establish a sharp nonlinear dimastimate for
(J, #udxdz)*/2, which enables us to prove finite time blowup of the 3D model.
This method of analysis is quite robust and captures verytivehonlinear
interaction of the multi-dimensional nonlocal system. A®sult, it provides
a very dfective method to analyze the finite time blowup of the 3D maahel
gives a relatively sharp blowup condition on the initial dmlindary values

for the 3D model.

1.4.3 Finite time blow-up of the 3D model with conservative BCs

We can also prove finite time blow-up of the 3D model with a evaative
boundary condition in a bounded domain. Specifically, wesatar the fol-
lowing initial boundary value problem:

W= A ) ea=0,x(0b) (1.27)
— A (UZ)Z , (X, Z2) €82 =208 X(U,D), .
Ylaorr =0, Yalr =0, (1.28)

Wl-0 = Yo(X,2), Ul=o = Up(X,2) = O,

wherex = (X, X2), Qx = (0,a)x(0,a), ' ={(X,2) e Q| X € Qy, z=0o0rz=b}.
The main result is stated in the following theorem.

Theorem 1.4.2 Assume that the initial conditiong wand ¢ satisfy ¢ €
H2(Q), Wolso = 0, Wola > 0, Yo € H3(Q), andy satisfies (1.28). Let

~a(z-b) _ cpl(z-b) X X
#(x,2) = % sin%1 sin%z, (X,2) € Q, (1.29)



The Dual Role of Convection in 3D Navier-Stokes Equations 21

withe = %, and

r® =

A= f (logug)pdxdz, B=2 f Yopdxdz,
Q Q
TX2 E
5

Z(g)z(e”b—e—“b) e
2(75[)2_02 fx(w_lﬁONZ:OSIn? squxg

IfA>0 B>O0andrl) < % as long as wy remain regular, then the solution
of (1.27)—(1.28) will develop a finite time singularity irethi’> norm.

1.4.4 Global regularity of the 3D inviscid model with small data

In this subsection we study the global regularity of the 3dscid model for a
class of initial data with some appropriate boundary céowitTo simplify the
presentation of our analysis, we useandy, as our new variables. We will
definev = y, and still useu to stand foru?. Then the 3D model now has the
form:

{ uw = 4uv

av - u, o *2€Q=00)x0.9)x(0.0). (130)

We choose the following boundary condition for
Vl(’)Q = -4, (131)

and denote|i—o = Vo(X, 2) anduli—o = Up(X, 2) > 0.
We prove the following global regularity result for the 3Dviscid model
with a family of initial boundary value problems.

Theorem 1.4.3 Assume thatdJvp € H3(Q) with s> 4, Uglsa = 0, Voloa = —4
and ¢ < —4 over Q. Then the solution of (1.30)—(1.31) remains regular in
HS(Q) for all time as long as the following holds

6(4Cs + 1) (IIvollms + Cllugllns) < 1, (1.32)

where G is an interpolation constant. Moreover, we hag ~ < ||u|lL~e™",
lUlls(@) < lluollnsye " and|Vlls) < C for some constant C which depends
on W, Vo and s only.

1.4.5 Blow-up of the 3D model with partial viscosity

In the previous subsections we considered only the invisddel. In this sub-
section we show that the 3D model with partial viscosity cko aevelop fi-
nite time singularities. Specifically, we consider thedualing initial boundary
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value problem in a semi-infinite domain:

b = 2uy;
wy = (uz)Z +vAw , (X,2)eQ=0,x(0,0), (1.33)
-AYy = w.
The initial and boundary conditions are given as follows:
Yloaawr =0, Wz +pY)Ir =0, (1.34)
wlpar =0, (wz+7yw)|r =0, (1.35)
w|t=0 = (,L)O(X, Z)’ u|t=0 = UO(X, Z) > Os (136)

wherel’ = {(X,2) € Q| x € Q, z=0).
Now we state the main result of this subsection.

Theorem 1.4.4 Assume thatglo = 0, Usoso = 0, Wla > 0, Uy € H3(Q),
Yo € H3(Q), wo € HY(Q), v satisfies (1.34) andy satisfies (1.35). Further,

we assume that € S, as defined in Lemma 1.5.1 aAd- % Y= [%2. Let

Xy . T
I’]—lsll’]—2

o(X,2) = € “si 2 (x,2) € Q, (1.37)

wherea = %ﬁ satisfied < @ < V2r/a. Define

A= f (logup)pdxdz, B = - f wogpdxdz, D = %,(1.38)
Q Q 2(2) — a2
) 3N2p\ —1/3
I =f * s (m D B) I, (1.39)
o Vé+1 12a

IfA>0 B>0, and T* < (log 2)(1/(23%2 - az))_l, then the solution of model
(21.33) with initial and boundary conditions (1.34)—(1.36i)| develop a finite
time singularity before T.

1.5 Local well-posedness of the 3D model with mixed
Dirichlet Robin Boundary conditions

In this section we prove the local well-posedness of the 3@lehwith the
mixed Dirichlet Robin boundary conditions considered iapinevious section.
The 3D model with partial viscosity has the following form:

U = 2uy,
wt (WP, +vAw , (X, eQ=0Q,x(0,0), (1.40)
-AYy = w
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whereQy = (0,a) x (0,a). LetI" = {(X,2) | X € Q, z = 0}. The initial and
boundary conditions for (1.40) are given as following:

wloayr =0, (wz+yw)|r =0, (1.41)
Ylaar =0, Wz +pY)Ir =0, (1.42)
w|t=0 = wO(X’ Z)? u|t=0 = UO(X’ Z)~ (143)

The analysis of finite time singularity formation of the 3D dedb uses the
local well-posedness result of the 3D model. The local \weledness of the
3D model can be proved by using a standard energy estimata arallifier
if there is no boundary or if the boundary condition is a staddne, see e.g.
[32]. For the mixed Dirichlet Robin boundary condition wensa@ler here, the
analysis is a bit more complicated since the mixed DiricRebin condition
gives rise to a growing eigenmode.

There are two key ingredients in our local well-posednesadyais. The first
one is to design a Picard iteration for the 3D model. The sg:ocme is to show
that the mapping that generates the Picard iteration is tagiion mapping
and the Picard iteration converges to a fixed point of therBiocaapping by
using the contraction mapping theorem. To establish thé&raction property
of the Picard mapping, we need to use the well-posednessipyay the heat
equation with the same Dirichlet Robin boundary conditisnua The well-
posedness analysis of the heat equation with a mixed Dati¢hdbin bound-
ary has been studied in the literature. The case» is more subtle because
there is a growing eigenmode. Nonetheless, we prove thideadissential reg-
ularity properties of the heat equation are still valid foe tmixed Dirichlet
Robin boundary condition witk > O.

The local existence result of our 3D model with partial vistpis stated in
the following theorem.

Theorem 1.5.1 Assume that ¢ € HS(Q), wg € HS(Q) for some s>

3/2, Wlsa = Updso = 0 and wq satisfies (1.41). Moreover, we assume that
B € S, (or Sp) as defined in Lemma 1.5.1. Then there exists a finite time
T = T (IUollue(ay. lwollsey) > O such that the system (1.40) with bound-
ary condition (1.41),(1.42) and initial data (1.43) has aique solution, ue
C([0, T], HS"Y(Q)), w € C([0, T], HS(Q)) andy € C([0, T], HS3(Q)).

The local well-posedness analysis relies on the followagl well-posedness
of the heat equation and the elliptic equation with mixeddbiet Robin bound-
ary conditions. First, the local well-posedness of theptliequation with the
mixed Dirichlet Robin boundary condition is given by thelésling lemma
[26]:
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Lemma1.5.1 There exists a unique solutiorevH(Q) to the boundary value
problem:

-Av=f, (X,2e€Q, (1.44)
Visorr =0, (V2 +pBV)Ir =0, (1.45)

ifBeSe=(B18%™ forall k e 2%}, f € H?(Q) with s > 2 and
floo\r = 0. Moreover we have

MIsey < Cal Fllws 2, (1.46)

where G is a constant depending on|k, = |/k? + k5.

Definition 1.5.1 LetX : HS2(Q) — H3(Q) be a linear operator defined as
following: for all f € HS?(Q),

K (f) is the solution of the boundary value problem (1.44)—(1.45)
It follows from Lemma 1.5.1 that for anf € HS2(Q), we have
1K (F)lIhs@) < Csll fllHs2(y- (1.47)

For the heat equation with the mixed Dirichlet Robin bougdasndition,
we have the following result.

Lemma 1.5.2 There exists a unique solutian € C([0, T]; HS(Q)) to the
initial boundary value problem:

wy = vAw, (X,2) €Q, (1.48)
wlpoyr =0, (wz + yw)lr =0, (1.49)
Wli=0 = a)o(X, Z), (1.50)

for wp € H3(Q) with s> 3/2. Moreover we have the following estimates in the
casey >0

lw®lks@) < CO» 9 Uwollisy, t= 0, (1.51)
and
lw®)llHs@) < C(y, s Dllwolliz), t>0. (1.52)

Remark 1.5.1 We remark that the growth factor’& in (1.51) is absent in
the case of < 0 since there is no growing eigenmode in this case.

Proof First, we prove the solution of the system (1.48)—(1.50)isjue. Let
w1, wy € H3(Q) be two smooth solutions of the heat equation for ® < T
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satisfying the same initial condition and the Dirichlet Roboundary condi-
tion. Letw = w; — wy. We will prove thatw = 0 by using an energy estimate
and the Dirichlet Robin boundary conditionlat

1
—Efwzdxd2=vfa)AdedZ
= —vf|Vw|2dXdZ—vfwadX
Q r
= —vfleIdedZ+ vyfwzdx
Q r
= —vf|Vw|2dXdZ—vyff (u)z) dzdk
Q rJz z
=—vf|Vw|2dXdZ— ZV)/ff ww,dxdz
Q rJz

s—vf|Vw|2dxdz+Kf|cuz|2dxdz+ 2v72fw2dxdz
Q 2 Q

Q

g—zf|Vw|2dxdz+ 2vy2fw2dxd2, (1.53)
2 Q Q

where we have used the fact that the smooth solution of thiedugetionw
decays to zero as— . Thus, we get

1d f w?dxdz < 2vy? f w?dxdz (1.54)
2dt Q Q
It follows from Gronwall’s inequality
eAWq‘f‘wzdxdzs.j“a%dxdz=(l (1.55)
Q Q

sincewp = 0. Sincew € HS(Q) with s > 3/2, this implies thatv = 0 for 0 <
t < T which proves the uniqueness of smooth solutions for the éaation
with the mixed Dirichlet Robin boundary condition.

Next, we will prove the existence of the solution by consinga solution
explicitly. Let n(x, z,t) be the solution of the following initial boundary value
problem:

n=vAn, (X2 €Q, (1.56)
Moo =0, nl-o =no(X.2) (1.57)
and leté(x, t) be the solution of the following PDE i€:

E = VE +vYPE, X € Qy, (1.58)
Elao, =0, Eli=o = wo(X), (1.59)
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whereAy, = 59_; + ;—ng andwo(X) = 2y fom wo(X,2€77*dz From the standard

theory of the heat equation, we know thyaand¢ both exist globally in time.
We are interested in the case when the initial vgl(, 2) is related tavg by

solving the following ODE as a function afwith x being fixed as a parameter:

1 _ _
=0z + 170 = wo(x.2) = To(e % 1o(x.0) = 0. (1.60)
Define
1
w(X,zt) = —;772 +n+EX e (X,2) € Q. (1.61)

It is easy to check thab satisfies the heat equation for> 0 and the ini-
tial condition. Obviouslyw also satisfies the boundary condition@®\I'. To
verify the boundary condition ofl, we observe by a direct calculation that
(wz + yw)Ir = —%(nz)z|r. Sincen(x, 2)|r = 0, we obtain by using; = vAn and
taking the limit azz — 0+ thatAn|r = 0, which implies thay,Jr = 0. There-
fore, w also satisfies the Dirichlet Robin boundary conditiolr athis shows
thatw is a solution of the system (1.48)—(1.50). By the uniquemesslt that
we proved earlier, the solution of the heat equation musivendy (1.61).

Sincen and¢ are solutions of the heat equation with a standard Dirichlet
boundary condition, the classical theory of the heat eqodtl5] gives the
following regularity estimates:

lls@y < Climollusey s 1€y < CE @My - (1.62)

Recall thaty,Jr = 0. Thereforey; also solves the heat equation with the same
Dirichlet Robin boudary condition:

(2); = vAnz,  (X,2) € Q, (1.63)
(72;lr =0, (@laar =0,  (M)li=0 = n0(X, 2), (1.64)

which implies that
||772||HS(Q) <C ||7702||HS(Q) . (1.65)

Putting all the above estimates fgrn, and¢ together and using (1.61), we
obtain the following estimate:

1 _
lwllhse) = H——Uz +n+E(X 1)e*
Y Hs(Q)

1 _
< 2 Inelhis) + sy + [lécx. e

< C(. 9) (Iodlsy + Iollsey + €7 @o(X)llns(y) - (1.66)

H3(Q)
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It remains to bounglnozllys (), IMollksqy @ndll@o(X)llksq,) in terms offlwollhs(qy-
By solving the ODE (1.60) directly, we can express terms ofwg explicitly

V4 00
no(x, 2) = —ye”* f e’ f(x,Z)dZ =y f e’ 2f(x,Z)dZ, (1.67)
0

z

wheref (X, 2) = wo(X, 2) — wo(X)e™* and we have used the property that
f f(x,2e*dz=0.
0
By using integration by parts, we have

nox(X, 2) = —yf(X, 2) + 2 f e7@2f(x, 7)dZ

z

=y f e @21, (x,Z)dZ. (1.68)
z
By induction we can show that for amy= (a1, @2, a3) =0
D% =y f e"ADf(x,Z)dZ. (1.69)
z
Let K(2) = ye"%¢(2) andy(2) be the characteristic function
0, z<0,

x@ = { 1 z-0 (1.70)

ThenD“nq can be written in the following convolution form:
D%no(X,2) = f K(Z - 2D"f(x,Z)dZ. (1.71)
0
Using Young’s inequality (see e.g. page 232 of [17]), we imbta
IDnollz) < 1K@l ID fllL2)

<€) [[Dwo - (1) €7D *IT(X)|| 2 g

< C(r, @) (ID"wollizgey + [P D@o(X)| o)) - (172)
Moreover, we obtain by using theditler inequality that

- 2 1/2
||D(al,dz)ao(x)”LZ(Qx) - (\L; (f e—yZD(m,az)wo(X’ Z)dZ) dx]

0

1 ” (Dlesa) 2 )
<|= DY) )4(x,2)) dzdk
(27 fgfo ( ol )) )

1
= —— ||Dlr2dawyg(x, z)||L2(Q). (1.73)

N
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Substituting (1.73) into (1.72) yields
ID*nolliz(y < C(y @) (IID"wollizy + [P Deol] oy ) (1.74)
which implies that
IMollhsy < C(y. 9) llwollnsy, ¥ $=0. (1.75)
It follows from (1.73) that
llwo(X)lIHs) < C) llwollksy» ¥ 5= 0. (1.76)
On the other hand, we obtain from the equationfp(1.60) that
Inozlsy = Y I + mollsy < Cr, I llwollnsy, V=20, (1.77)
Upon substituting (1.75)—(1.77) into (1.66), we obtain
llwllhs@) < Cy, 9e llwollHsy » (1.78)

whereC(y, s) is a constant depending only g¢rands. This proves (1.51).

To prove (1.52), we use the classical regularity result lierieat equation
with the homogeneous Dirichlet boundary condition to abthie following
estimates fot > 0:

sy < COIImollLz(q), (1.79)
Ik < C(S Doz (1.80)
(X0, < TS D @oMllL2(q,) » (1.81)

whereC(s,t) is a constant depending @andt. By combining (1.79)—(1.81)
with estimates (1.75)—(1.77), we obtain for any 0 that

2t
llwllhs) < C(y, s1) (||7702||L2(Q) + II7ollLzy + €7 ||‘U0(X)||L2(QX))
< C(y, s HllwollLz(ys (1.82)

whereC(y, s,t) < o is a constant depending on s andt. This proves (1.52)
and completes the proof of the lemma. O

We also need the following well-known Sobolev inequalitg][1
Lemma 1.5.3 Letuv e H3Q) with s> 3/2. We have
luMIks@) < cllullis@)lMIRs@)- (1.83)

Now we are ready to give the proof of Theorem 1.5.1.
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Proof of Theorem 1.5.1Letv = u?. First, using the definition of the operator
K (see Definition 1.5.1), we can rewrite the 3D model with @éxtiscosity in
the following equivalent form:

{ Y = K(w);

w = Vz+vAw (x,2) € @ = QX (0, ), (1.84)

with the initial and boundary conditions given as follows:

wlpoyr =0,  (wz+yw)|r =0, (1.85)

wh-o = wo(X,2) € WS, Vl—o = Vo(X, 2) € VS, (1.86)
whereVst! = {v e H51 : v|sq = 0, Vylso = 0, Vudsq = 0} andWs = {w e HS :
Wlsarr = 0, (W, + yw)|r = 0}

We note that the conditiong|sq = Ugzlaq = 0 implies thatvglsa = Vozloo =
Vozdoa = 0 by using the relationy = ug. Thus we havey € VS, Itis easy to
show by using the-equation that the property|so = Uozlaq = O is preserved
dynamically. Thus we havee VSt

DefineU = (Uy, Uy) = (v, w) andX = C([0, T]; V1) x C([0, T]; W) with
the norm

lVllx = sup [lUillnsaq) + suUp [[Uzllps), YU e X
t€[0,T] te[0,T]

andletS = {U € X : ||U|lx < M}.
Now, define the ma@ : X — X in the following way: let®(V, ©) = (v, w).
Then for anyt € [0, T],
V(X, 2, t) = Vo(X, z t) + 4ft (X, 1)K (D)%, z t")dt, (1.87)
w(X, 1) = L[V, wo; X, z,t)o, (1.88)
wherew(X, z,t) = L(V;, wo; X, 2 t) is the solution of the following equation:
wt = +vAw, (X2 € Q =0y x(0,), (1.89)
with the initial and boundary conditions:
wlaar =0, (wz+yw)lr =0, wh=o = wo(X,2).

We use the ma® to define a Picard iteratiord*! = ®(UX) with U° =
(Vo, wo). In the following, we will prove that there exi3t > 0 andM > 0 such
that

1. Ukes, forallk.
2. Ukt — UK, < 3]Juk - Uk, forallk.
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Then by the contraction mapping theorem, there exists (v,w) € S such
that®(U) = U which implies thaU is a local solution of the system (1.84) in
X.

First, by Duhamel’s principle, we have for agy C([0, T]; V®) that

t
L(g, wo; X, 2. t) = P(wo; 0,1) + f P(g:t, t)dt, (1.90)
0

where®(g; t’,t) = §(x, zt) is defined as the solution of the following initial
boundary value problem at tinte

O = vAD, (X,2) € Q=Qy x (0, ), (2.91)
with the initial and boundary conditions:
Gloor =0, (G +79Ir=0, 9x,zt)=9(x,zt). (1.92)

We observe thag(x, z t’) also satisfies the same boundary conditiomwdsr
any 0< t’ < t sinceg = V¢ andv* e Vs*2,

Now we can apply Lemma 1.5.2 to conclude that for &ny T andt €
[t', T]we have

IP(@: V. Dy < C(r. 97 Dlig(x, 2, ) llns(e- (1.93)
which implies the following estimate fof: for all t € [0, T],
1£(9, wo; X, Z Yllys(qy < C(y» 9et (llwollHS(ﬂ) +t S[lép] lla(x, Z,t')llHS(Q)) .(1.94)
t’e[0,t

Further, by using Lemma 1.5.1 and the above estimate (1d4hé se-
quencel® = (¥, W), we get the following estimate¥t [0, T],

”VkJrl”HM(Q) < [Vollnsiaey + 4T tes[éf% ”Vk(x’ Z’t)”HS+1(9) t;g% Hq((‘“k)Z(X’ Z’t)|lH5+1(Q) ’

ey (1.95)

k
< INollwr(ey + 4T sup IV, 2 8)| o1 Sup [l (x. 2 1)

Hs(a))

<C ,se”zT(a) o + T sup V... ) 1.96
(v.9) llwollhs(ey te[O,'FI')] l ||H 1) (1.96)

k+1

“L{) HS(Q) < C(% S)ev‘yzt (”wOHHS(Q) + t Stl)p] ||V§(X, Z; t/)
t'e[0,t

Next, we will use mathematical induction to prove thaT ikatisfies the fol-
lowing inequality:

8C(r, 9TE” (llwollus(ey + 2T INollsry) < 1 (1.97)
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then for allk > 0 andt € [0, T], we have that

||Vk||Hs+1(Q) < 2||V0||H5+1(Q) > (198)
sy < CO» 97T (Ilwollsiey + 2T IVolhsrey) . (1.99)

First of all, U° = (vo, wo) satisfies (1.98) and (1.99). Assutdé = (¥, w*) has
this property, then fot*+1 = (V¢*1, w**1), using (1.95) and (1.96), we have

”Vk+l”Hs+1(Q) < ||V0||H5+1(Q) +4T tes[é{?] ||Vk(x’ Zet)“HsA(Q) tes[éj,?] ||wk(xa Z t) Hs(Q)

< [Vollns2(ay (1 + 8C(y. 9T (llwollhsiey + 2T INoll=1(cy))
< 2|Nollusgey . V€ [0, T, (1.100)

k+1

[l Hliys0y < CO- 9T (||w0||HS(Q) +T tes[(l){% ||vk||HM(Q))

< C(r. 9" (llwollist@) + 2T INoll=(ey) . ¥t € [0, T].(1.101)

Then, by induction, we prove that for aky> 0, UK = (%, »¥) is bounded by
(1.98) and (1.99).

We want to point out that there exists> 0 such that the inequality (1.97)
is satisfied. One choice @fis given as following:

. -1
T, = mln{[SC(y, 9" (lwollisiey + 2IVollus1(ay)] ,1}. (1.102)
Using the choice of T in (1.102), we can choose

M = 2[Volly=10) + C(- 97" (Ilwolls(y + 2INoll=1) -

Then we havéJk € S, for all k.

Next, we will prove thatb is a contraction mapping for some smakQr <
Ti.
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First of all, by using Lemmas 1.5.1 and 1.5.3, we have

||Vk+l - Vk“Hs+1(Q) =

‘ f t VE(X, 1)K (") o(, ) dt — f t VEL(x, 1)K (K1) (x, 1) d
0 0

Hs"1(Q)

t (V= V) (1)K (@¥)o(x, V)dt
0

Hs(Q)
+ f t VL) (K (09 = K(@Fh),) (¢ )dt

T VK-V K
<T sup | [ (AR

Hs+1(Q)
[

T S0 [V SR ||7<(w Y,

sup [,

< MT(sup IV = ¥+ 0B [k - ot

. 1.103
t€[0.T] t€[0.T] H (Q)) ( )

On the other hand, Lemma 1.5.2 and (1.90) imply
||wk+1 ||-£( U-)O; X, t) - -E(\,lZ(_]-’ CL)O; X, t)

Y. o 1Y ’
< fOP(v'; VLt f)dt

—LL)

Hs(Q) Hs(Q)

H(Q)
<TCl.9e”T Sup [ - v

H(Q)

< TC(y,9e”T sup [V = v 1||HS+1(Q) (1.104)
te[0,T

Let

. 2 -1 2171 1
T = m|n{[8C(y, 9€”" (llwollsy + 2INollusaiey)| - [2C0. 97| N 1}. (1.105)
Then, we have

Just = U < 5 Jur- U],
2

This proves that the sequenté converges to a fixed point of the map :
X — X, and the limiting fixed pointU = (v, w) is a solution of the 3D model
with partial viscosity. Moreover, by passing to the limit({h.98)—(1.99), we
obtain the followinga priori estimate for the solutiornv(w):

IMlnsa(e) < 2[IVollus(q) » (1.106)
lwllhs@) < C(y, 9e7’T <||wo||Hs(9) +2T ||Vo||HS+1(Q)), (1.107)

for 0 <t < T with T defined in (1.105).
It remains to show that the smooth solution of the 3D modeh \pirtial
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viscosity is unique. Letv, w1) and {2, w») be two smooth solutions of the 3D
model with the same initial data and satisfyiiW|ps1q) < M and||willns) <
Mfori =1,2and 0<t < T, whereM is a positive constant depending on
the initial data as well ag, s, andT. Sinces > 3/2, the Sobolev embedding
theorem [15] implies that

[VillLe@) < [Villysay < M, =12, (1.108)
||7<(wi)z||L°°(Q) < ||7<(wi)ZI|H5(Q) < Cs”wi”Hs(Q) <CM, i=1 2-(1-109)
Letv=v; — v, andw = w1 — wy. Then §, w) satisfies

{ Vi = 4\ﬂ((w1)z+4V27((w)Z

o v . (%2 €Q =0 x(0,00),(1.110)

with wlpoyr =0,  (wz + yw) Ir = 0, andwli=o = 0, Vli=o = 0. By using (1.108)—
(1.109), and proceeding as the uniqueness estimate foreideelguation in
(1.53), we can derive the following estimate foandw:

d
GiMIEze < CalMIEz(qy + llellEz(gy), (1.111)
d
Gtz < CallMIEz(qy + l@liEzqy): (1.112)

whereC; (i = 1,2, 3) are positive constants dependingMnyv, y, Cs. In ob-
taining the estimate for (1.112), we have performed intignaby parts in the
estimate of they,-term in thew-equation and absorbing the contribution from
w; by the dtfusion term. There is no contribution from the boundary term
sincevi;o = 0. We have also used the propefitif(w)ll.>2) < Csllwlliz@),
which can be proved directly by following the argument in thppendix

of [26]. Sincevy = 0 andwg = 0, the Gronwall inequality implies that
MlLz) = llwllz@) = 0 for 0 < t < T. Furthermore, since € Hs*! and

w € HSwith s> 3/2, vandw are continuous. Thus we must have w = 0

for 0 <t < T. This proves the uniqueness of the smooth solution for the 3D
model. O
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