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Abstract. In [5], a reduced basis method (RBM) for the electric field integral equation (EFIE)
based on the boundary element method (BEM) is developed, based on a simplified a posteriori error
estimator for the Greedy-based snapshot selection. In this paper, we extend this work and propose
a certified RBM for the EFIE based on a mathematically rigorous a posteriori estimator. The main

difficulty of the certified method is that the intrinsic solution space of the EFIE is H
− 1

2
div (Γ), with a

norm that is not computable in practice. Since the measured error consists of the difference between
the reduced basis solution and the boundary element solution, which is a member of the discrete
boundary element space, we clarify that the intrinsic norm can be replaced by alternative norms, in
this work the H(div)-norm, that are computable without degrading the quality of the error estimator.
A successive constraint method (SCM) for complex matrices is discussed in detail and numerical tests
for the SCM and certified RBM are performed to confirm the analysis.

1. Introduction. Many applications related to computational optimization, con-
trol, and design require the ability to rapidly, and accurately solve parameterized
problems many times for different parameter values within a given parametric do-
main. The reduced basis method (RBM) [11, 13] is a very accurate and efficient
method for such scenarios allowing a mathematically rigorous error control of the
applied model reduction.

In [5], a reduced basis method (RBM) for parameterized scattering problems in
computational electromagnetics for the electric field integral equation (EFIE) [2, 6, 7],
discretized using the boundary element method, is proposed. As is standard for RBMs
a greedy algorithm, based on an a posteriori estimator, is employed to assemble the
low dimensional (reduced basis) approximation space. The quality of these estimates
has a direct impact on the approximation properties of the reduced basis. In [5], a
simple L2-norm of the residual is used as an error estimator, neglecting the parameter
dependence of the involved inf-sup stability constant of the BEM. For the EFIE with
the wave number being a parameter, this constant can be arbitrarily close to zero for
some configurations and a uniform lower bound may thus lead to very conservative
error estimates. Thus, to improve the quality of the error estimator and recover a
practical certified RBM, we have to design the error estimator carefully to incorporate
the stability constant.

In [4, 9, 11, 13], the general background for a posteriori error estimators for the
reduced basis method is presented. In these papers, the intrinsic norm of the solution
space is used to measure the error. For example, the H1-norm is used for diffusion
equations [11] and the H(curl)-norm is used for Maxwell’s equations [4]. For most
problems, this intrinsic norm is the natural choice as we often have some a priori
stability estimates based on these intrinsic norms. In general, the coercivity or the
inf-sup stability constant has advantageous properties, making the computation of
the coercivity or the inf-sup stability constant in these intrinsic norms more stable.
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For the EFIE, the intrinsic solution space is H−
1
2

div (Γ) [2, 7], a dual space on the
surface Γ. The corresponding norm is defined as a dual norm. The computation of
dual norms is very difficult in practice if not computationally prohibitive, see [10] for
a computation of the H−1/2-norm based on multilevel refinements. In addition, the
a priori estimation of the EFIE is very weak and the existence and uniqueness of the
solution are based on the Fredholm alternative theory. There is no a priori estimation
for the inf-sup constants for the EFIE and thus the benefit of using the intrinsic norm
is less clear.

However, we may use other suitable norms. For a particular parameter value,
the model reduction error is measured as the difference between the reduced basis
solution and the discrete boundary element solution. Both solutions are discrete and
can be measured by some simpler and computable norm. In our case, the discrete
boundary element space is the lowest order complex Raviart-Thomas space, which is
a conforming subspace of H0

div(Γ) equipped with an easily computable H(div)-norm.
In what follows, we adopt this norm to measure the model reduction error and we shall
demonstrate that this does not adversely impact the accuracy of the error estimator.

The corresponding inf-sup stability constants with respect to the H(div)-norm
are computed by the successive constraint method (SCM) [3, 4, 8]. Different from
the presentation in [3], where the real and imaginary parts of a complex matrix are
decoupled in the SCM, we improve the algorithm by fully utilizing the properties of
Hermitian matrices.

What remains of this paper is organized as follows. In Section 2 we briefly outline
the electric field integral equation (EFIE), the boundary element methods (BEM), and
the reduced basis method (RBM) for the EFIE. We develop a certified RBM in Section
3, where the error estimator and successive constraint method (SCM) for the complex
case is presented in detail. Numerical tests are performed in Section 4 to test the
SCM and the certified RBM and Section 5 concludes with a few remarks.

2. EFIE and Reduced Basis Method. In this section, we review the electric
field integral equations (EFIE) and the reduced basis methods (RBM). A detailed
presentation can be found in [5].

2.1. Governing equations. We consider a configuration in the three-dimensional
space, consisting of an obstacle D. The surface of D is denoted by Γ and for each
point x ∈ Γ we assign a unitary normal vector n(x). If Γ is a closed surface, we chose
the exterior normal.

The obstacle D is situated in a homogeneous medium with vanishing conductivity,
the free space permittivity ε0 = 107/(4πc2)F/m and permeability µ0 = 4π×10−7H/m,
where c = 299, 792, 458 m/s is the speed of light.

We seek to model the scattering by D of an incident time-harmonic electromag-
netic plane wave

Einc(x; k, d̂, p̂) = ikp̂eikx·d̂,

H inc(x; k, d̂, p̂) = ik
(
d̂×p̂

)
eikx·d̂,

with d̂ ⊥ p̂ and parameterized by the wave-number k ∈ R+, direction d̂ ∈ S2 and
polarization p̂ ∈ R3 where S2 denotes the unit sphere. We identify any vector per-
pendicular to d̂ to a vector in R2 by expressing it in a basis that is perpendicular to
d̂ and denote the set of parameters by µ = (k, d̂, p̂) ∈ P for some fixed parameter
domain P ⊂ R+×S2×R2. The wavelength of the incident electric and magnetic fields
is given by λ = 2π/k.

2



The total field components [E,H], i.e, the incident and the scattered fields with
the latter denoted by [Esca,Hsca], satisfy the time-harmonic Maxwell equations:

curl E(x)− iωµ0H(x) = 0, curl H(x) + iωε0E(x) = 0, x ∈ R3 \D,
(2.1)

and the Silver-Müller radiation condition

lim
|x|→∞

[H(x)×x− |x|E(x)] = 0. (2.2)

We assume that the obstacle D is perfectly conducting and hence the tangential
component of the total electric field E vanishes on the surface of D, yielding the
boundary condition:

n(x)×E(x) = −n(x)×Einc(x), x ∈ Γ. (2.3)

Using the Stratton-Chu representation formula, the scattered electric and the mag-
netic field can be represented by

Esca(x) = ikZ

∫
Γ

[
G(r; k)u(y) + 1

k2 gradxG(r; k)divΓ,yu(y)
]
dy,

Hsca(x) = − i
kcurl Esca(x),

where G is the fundamental solution of the Helmholtz operator defined by

G(r, k) =
eikr

4πr
, r = |x− y|.

Invoking the boundary condition for E yields the Electric Field Integral Equation
(EFIE):

T[u(x;µ);µ] = f [x;µ], (2.4)

where

T[u(x;µ);µ] = ikZ γt

(∫
Γ

[
G(r; k)u(y) + 1

k2 gradxG(r; k)divΓ,yu(y)
]
dy

)
,

f [x;µ] = −γt
(
Einc(x;µ)

)
,

with γt(u) = n×(u×n) on Γ. The EFIE can be cast in terms of a variational problem:

for a given parameter value µ ∈ P , find u(µ) ∈X := H
− 1

2
div (Γ) such that

a[u(µ),v;µ] = f [v;µ] (2.5)

for all v ∈X. The sesquilinear and linear forms are given by

a[u,v;µ] = ikZ

∫
Γ×Γ

G(r; k)u(y) · v(x) dy dx

− iZ
k

∫
Γ×Γ

G(r; k)divΓ,yu(y)divΓ,xv(x) dy dx,

f [v;µ] = −
∫

Γ

Einc(x;µ) · v(x) dx.

3



Here and in the following that we use u instead of u(µ) at times for sake of simple
presentation. Note that projecting Einc(x;µ) onto the surface Γ is no more necessary
since v is a tangential function.

Let Th be a family of shape-regular triangulations decomposing Γ into flat trian-
gles. By RT0(T ) we denote the local Raviart-Thomas space on Γ of complex-valued
functions on T ∈ Th defined by (cf. [12])

RT0(T ) :=
{
vh(x) = α+ βx

∣∣α ∈ C2, β ∈ C,x ∈ T
}
.

On a global level, the Raviart-Thomas space is defined by

RT0 :=
{
vh ∈H0

div(Γ)
∣∣vh|T ∈ RT0(T ) ∀T ∈ Th

}
,

where H0
div(Γ) is defined in a standard manner

H0
div(Γ) :=

{
v ∈ L2

t (Γ)
∣∣ divΓv ∈ L2(Γ)

}
.

Observe that the approximation space is conforming, i.e. RT0 ⊂H0
div(Γ) ⊂H−

1
2

div (Γ).
The corresponding boundary element method then consists of seeking, for any

given parameter value µ ∈ P , the discrete solution uh(µ) ∈Xh such that

a[uh(µ),vh;µ] = f [vh;µ], (2.6)

for all vh ∈Xh.
For different configurations defined by a particular value of the parameter µ =

(k, d̂, p̂) ∈ P we are interested in studying the the radar cross section (RCS) of
D, measured by a receiver situated in the direction d̂0 ∈ S2. We denote the set
of parameters for the output functional by µs ∈ Ps for some parameter domain
Ps ⊂ R+×S2. It contains the wave-number k and some directional unit vector d̂0 ∈ S2.

The RCS is an indication of the directional far field associated with a scatterer
D. It is a functional of the electric current u(µ) on the surface and is defined by

rcs[u(µ);µ,µs] := 10 log10

(
4π
|s∞[u(µ);µs]|2

|Einc(µ)|2

)
where s∞ is a linear functional of u(µ) given by

s∞[u(µ);µs] :=
ikZ

4π

∫
Γ

d̂0×(u(x;µ)×d̂0)eikx·d̂0 dx.

The RCS represents the energy of the total electric field E at infinity in the direction
d̂0.

2.2. Introduction to the Reduced Basis Method. For parametrized scat-
tering problems we are interested in a fast evaluation of the following input-output
procedure:

µ ∈ P −→ solve: Lh[uh(µ);µ] = 0 −→ rcs[uh(µ);µ,µs] (2.7)

where solving Lh[uh(µ);µ] = 0 schematically represents solving problem (2.6). We
refer to this procedure as the truth solver.

We consider problems where the output functional rcs [uh(µ);µ,µs] needs to
be computed for many different parameter values µ. In this case, solving the full
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boundary element problem each new parameter value is not a viable option. The
Reduced Basis Method is an algorithmic completion of the boundary element method
to solve in a fast manner

µ ∈ P −→ solve: LN [uN (µ);µ] = 0 −→ rcs[uN (µ);µ,µs]. (2.8)

The reduced basis space approximates the discrete space

XN ≈ {uh(µ) : µ ∈ P}.

and accuracy of scheme is controlled by the quality of this approximation. We denote
the dimension of XN by N and the dimension of the boundary element space Xh by
N . Solving LN [uN (µ);µ] = 0 consists of: for any given parameter value µ ∈ P , the
discrete solution uN (µ) ∈XN such that

a[uN (µ),vN ;µ] = f [vN ;µ], (2.9)

for all vN ∈ XN . The complexity of this problem depends then on N and is inde-
pendent of N . Empirically, for the problems under consideration one can observe
that N � N , making it clear that there is a substantial advantage in solving the Re-
duced Basis problem LN [uN (µ);µ] = 0 as it is much faster than solving the boundary
element problem However, the remaining questions are

• How to find basis functions for XN?
• How to solve (2.9) efficiently?

The common approach for reduced basis methods is to build XN as the span of
solution to (2.6) for particular parameter values (called snapshots), i.e.,

XN = span{uh(µ1), . . . ,uh(µN )},

where µ1, . . . ,µN are selectively chosen parameters. Those sample points are selected
using a Greedy algorithm [] to optimize cost and accuracy. Given an error indicator
η(µ) ≈ ‖uh(µ)−uN (µ)‖Xh

to indicate the error of the reduced basis approximation
of (2.9) with respect to the boundary element solution (2.6) (the truth solution) in a
given norm ‖ · ‖Xh

, we proceed as follows
0: Pick arbitrarily µ1 ∈ P , set N = 1 and W0 = ∅.
1: Solve Lh(uh(µN );µN ) = 0, set WN = span{WN−1,uh(µN )}.
2: Consider the procedure

µ ∈ P −→ solve: LN (uN (µ);µ) = 0 −→ η(µ)

and find µN+1 = arg maxµ∈P η(µ).
3: Set N := N + 1 and go to 1.

This procedure is applied until maxµ∈P η(µ) is small enough or a maximum of itera-
tions is attained. In this manner, we construct an N -dimensional reduced basis space
by only solving N boundary element problems. In addition, we obtain a hierarchical
basis.

In order to only select the necessary modes, it is important that the error estimate
η(µ) is as accurate as possible. In addition, if the estimate is such that

η(µ) ≥ ‖uh(µ)− uN (µ)‖Xh
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and the computable error estimate guarantees that η(µ) ≤ Tol for all parameter
values, then a minimal error tolerance of ‖uh(µ)−uN (µ)‖Xh

≤ Tol can be certified.
For more details, see the upcoming Section 3.1.

The second point requires attention on how to solve LN [uN (µ);µ] = 0 resp. (2.9)
efficiently. As stated earlier, problem (2.9) can be written as a N -dimensional linear
system

A(µ)UN (µ) = F(µ),

where A(µ) is the matrix corresponding to the sesquilinear form a[·, ·;µ] and F(µ)
is the vector corresponding to the linear form f [·;µ] whereas UN (µ) is the solution
vector, i.e. the representation of uN (µ) in a chosen basis of XN . This is an N -
dimensional system. Thus, solving it does not depend on the dimension N of the
underlying boundary element space Xh. However, assembling the matrix A(µ) does
depend onN . Since one is interested in computing the reduced basis solution for many
different parameter values, it is important to satisfy the following affine decomposition
property

a[u,v;µ] =
Qa∑
q=1

θqa(µ) aq[u,v], (2.10)

f [v;µ] =
Qf∑
q=1

θqf(µ) fq[v], (2.11)

s∞[u,µs] =
Q∞,m∑
q=1

θq∞,m(µ) sq∞[u]. (2.12)

Thus we impose a separation of parameter dependent scalar functions θqa , θqf , θq∞,m and
parameter independent forms aq, fq, sq∞. This assumption allows for an offline/online
separation where, during the offline phase we compute the reduced basis and assemble
the parameter independent N×N -dimensional matrices Aq, and the N -dimensional
vectors Fq,Sq∞.

During the online procedure (2.8) then takes the following form: For any new
parameter value µ ∈ P , assemble the matrix and vector

A(µ) =
Qa∑
q=1

θqa(µ) Aq,

F (µ) =
Qf∑
q=1

θqf(µ) Fq,

S∞(µs) =
Q∞,m∑
q=1

θq∞,m(µs)S
q
∞,

solve the linear system

A(µ)UN (µ) = F (µ)
6



and compute the RCS-signature

s∞[uN (µ),µs] = S∞(µs)UN (µ)( to check dimensions etc)

rcs[uN (µ),µ,µs] = 10 log10

(
4π
|s∞[u(µ);µs]|2

|Einc(µ)|2

)
.

Observe that the online procedure is independent of N and, thus, can be computed
at very limited computational cost.

Observe that the affine decomposition can not be satisfied in an exact manner
for the sesequilinear and linear forms a[·, ·;µ], f [·;µ] and s∞[·;µs]. This can be
overcome by using the Empirical Interpolation Method (EIM) to satisfy the condition
in an approximative manner to any desired tolerance. For more informations on how
to apply to the EIM we refer to [5, Section 5] for a detailed discussion.

3. Certified online error estimation. Having discussed the core elements of
the algorithm above, let us in the following develop the a posteriori error estimator
and discuss its implementation in an online manner that allows for a fast and accurate
evaluation of the estimator to certify the accuracy of the output of interest.

3.1. Certified a posteriori estimation. The goal of this section is to con-
struct the a posterior error indicator η(µ), required during the greedy construction to
assemble the reduced basis and during the online procedure to certify a certain error
tolerance of the error

‖uh(µ)− uN (µ)‖Xh
,

where ‖ · ‖Xh
is a suitable norm for Xh with scalar product (·, ·)Xh

. Let e(µ) =
uh(µ)− uN (µ) ∈Xh be the error function satisfying

a[e(µ),vh;µ] = r[vh;µ], ∀vh ∈Xh

where r[·;µ] ∈X ′h is the residual

r[vh;µ] = f [vh;µ]− a[uN (µ),vh;µ], ∀vh ∈Xh.

Referring to its Riesz representation ê(µ) ∈Xh yields

(ê(µ),vh)Xh
= r[vh;µ], ∀vh ∈Xh,

and thus

a[e(µ),vh;µ] = (ê(µ),vh)Xh
. (3.1)

In addition, by definition of the operator norm we have

‖r[·;µ]‖X′
h

= sup
vh∈Xh

r[vh;µ]
‖vh‖Xh

= ‖ê(µ)‖Xh
.

Under the assumption that (2.9) is uniquely solvable, the following holds: for each
µ ∈ P , there exists an βh(µ) > 0 such that

βh(µ)‖vh‖Xh
≤ sup
wh∈Xh

a[vh,wh;µ]
‖wh‖Xh

, ∀vh ∈Xh. (3.2)
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Now, assuming that we can easily, and independently of N , compute a lower bound
0 < βLB(µ) ≤ βh(µ), for any µ ∈ P , we define the a posteriori estimate as

ηN (µ) =
‖ê(µ)‖Xh

βLB(µ)
. (3.3)

Proposition 3.1. [11] The a posteriori estimator defined in (3.3) is reliable,
i.e.,

‖uh(µ)− uN (µ)‖Xh
≤ ηN (µ).

Proof. Indeed, combining the inf-sup condition(3.2) with (3.1) yields

βh(µ) ‖e(µ)‖Xh
≤ sup
wh∈Xh

a[e(µ),wh;µ]
‖wh‖Xh

= sup
wh∈Xh

(ê(µ),wh)Xh

‖wh‖Xh

≤ ‖ê(µ)‖Xh

and thus

‖e(µ)‖Xh
≤ 1

βh(µ)‖ê(µ)‖Xh
≤ 1

βLB(µ)‖ê(µ)‖Xh
= ηN (µ).

Under the condition, that for the given norm ‖ · ‖Xh
, the form a[·, ·;µ] is also

continuous, that is: for each µ ∈ P , there exists a constant γh(µ) > 0 such that

a[vh,wh;µ] ≤ γh(µ) ‖vh‖Xh
‖wh‖Xh

, ∀vh,wh ∈Xh,

one can prove the following efficiency result:
Proposition 3.2. The a posteriori estimator defined in (3.3) is efficient, i.e.,

ηN (µ) ≤ γh(µ)
βLB(µ)‖e(µ)‖Xh

.

Proof. Given that

‖ê(µ)‖2Xh
= a[e(µ), ê(µ);µ] ≤ γh(µ) ‖e(µ)‖Xh

‖ê(µ)‖Xh

we conclude that

ηN (µ) = 1
βLB(µ)‖ê(µ)‖Xh

≤ γh(µ)
βLB(µ)‖e(µ)‖Xh

.

Proposition 3.3. The error in the output functional s∞ is certified by the
following computable error bound

|s∞[uh(µ);µs]− s∞[uN (µ);µs]| < kZ|Γ|
1
2

4π ηN (µ).

Proof. By linearity of s∞ and Proposition 3.1, observe that the following bound
holds

|s∞[uh(µ);µs]− s∞[uN (µ);µs]| = s∞[uh(µ)− uN (µ);µs]| ≤ ‖s∞[·; k, d̂0]‖X′
h
‖uh(µ)− uN (µ)‖Xh

≤ ‖s∞[·; k, d̂0]‖X′
h
ηN (µ),
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where the operator norm can be estimated by

‖s∞[·; k, d̂0]‖X′
h

= sup
wh∈Xh

|s∞[wh; k, d̂0]|
‖wh‖Xh

=
kZ

4π
sup

wh∈Xh

|
∫

Γ
d̂0×(wh(x;µ)×d̂0)eikx·d̂0 dx|

‖wh‖Xh

≤ kZ

4π
sup

wh∈Xh

|
∫

Γ
wh(x;µ)eikx·d̂0 dx|
‖wh‖Xh

≤ kZ

4π
sup

wh∈Xh

‖wh‖L2(Γ)‖1‖L2(Γ)

‖wh‖Xh

=
kZ|Γ| 12

4π
sup

wh∈Xh

‖wh‖L2(Γ)

‖wh‖Xh

≤ kZ|Γ| 12
4π

.

Corollary 3.4. Given s∞[uN (µ);µs] and the error certification εs = kZ|Γ|
1
2

4π ηN (µ),
the truth functional s∞[uh(µ);µs] lies within the error bars

s∞[uN (µ);µs]− εs ≤ s∞[uh(µ);µs] ≤ s∞[uN (µ);µs] + εs.

Proposition 3.5. The error in the radar cross section rcs is certified by the
following computable error bound

|rcs[uh(µ);µ,µs]− rcs[uN (µ);µ,µs]|

≤ 20 max
(

log10

(
|s∞[uN (µ);µs]|+ εs
|s∞[uN (µ);µs]|

)
, log10

(
|s∞[uN (µ);µs]|

|s∞[uN (µ);µs]| − εs

))
.

Proof. Using properties of the logarithmic function, note that

rcs[uh(µ);µ,µs]− rcs[uN (µ);µ,µs]

= 10
(

log10

(
4π
|s∞[uh(µ);µs]|2

|Einc(µ)|2

)
− log10

(
4π
|s∞[uN (µ);µs]|2

|Einc(µ)|2

))
= 20 (log10 (|s∞[uh(µ);µs]|)− log10 (|s∞[uN (µ);µs]|))

= 20 log10

(
|s∞[uh(µ);µs]|
|s∞[uN (µ);µs]|

)
.

From the bound

|s∞[uh(µ);µs]− s∞[uN (µ);µs]| < εs

and using the inverse triangle inequality we deduce the error bars

|s∞[uN (µ);µs]| − εs < |s∞[uh(µ);µs]| < |s∞[uN (µ);µs]|+ εs

and

|s∞[uN (µ);µs]| − εs
|s∞[uN (µ);µs]|

<
|s∞[uh(µ);µs]|
|s∞[uN (µ);µs]|

<
|s∞[uN (µ);µs]|+ εs
|s∞[uN (µ);µs]|

.

Thus, we get the bounds

|s∞[uh(µ);µs]|
|s∞[uN (µ);µs]|

<
|s∞[uN (µ);µs]|+ εs
|s∞[uN (µ);µs]|

and
|s∞[uN (µ);µs]|
|s∞[uh(µ);µs]|

<
|s∞[uN (µ);µs]|

|s∞[uN (µ);µs]| − εs
,
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and we can thus finally estimate

|rcs[uh(µ);µ,µs]− rcs[uN (µ);µ,µs]|

= 20 max
(

log10

(
|s∞[uh(µ);µs]|
|s∞[uN (µ);µs]|

)
, log10

(
|s∞[uN (µ);µs]|
|s∞[uh(µ);µs]|

))
≤ 20 max

(
log10

(
|s∞[uN (µ);µs]|+ εs
|s∞[uN (µ);µs]|

)
, log10

(
|s∞[uN (µ);µs]|

|s∞[uN (µ);µs]| − εs

))
.

In our case, the intrinsic solution space X is the space H−
1
2 (divΓ,Γ), see [7, 2],

which induces a natural norm for the discrete space Xh. Here the operator divΓ

denotes the surface divergence. This norm is however not computable in practice.
Observing that the discrete approximation space Xh is a subspace of H(divΓ,Γ), we
define the norm ‖ · ‖Xh

as

‖vh‖2Xh
= ‖vh‖2L2(Γ) + ‖divΓvh‖2L2(Γ), ∀vh ∈Xh.

In what follows, we shall use this norm to measure the error.

3.2. Efficient implementation of the error estimator. Under the assump-
tion that the lower bound of the inf-sup constant is computable for any parameter
value, independently of the dimension of the boundary element space N , we show
in this section how the error estimation η(µ) can be likewise be evaluated online
independently of N . The computation of the inf-sup constant is addressed in the
upcoming Section 3.3.

Given the affine decompositions (2.10), (2.11) we write

(ê(µ),vh)Xh
= r[vh;µ] = f [vh;µ]− a[uN (µ),vh;µ]

=
Qf∑
q=1

θqf(µ) fq[vh]−
Qa∑
q=1

θqa(µ) aq[uN ,vh]

=
Qf∑
q=1

θqf(µ) fq[vh]−
N∑
n=1

Qa∑
q=1

unθ
q
a(µ) aq[ξn,vh],

where {ξn}Nn=1 are basis functions of the reduced basis WN and {un}Nn=1 ⊂ C the
degrees of freedom with respect to {ξn}Nn=1. Thus, we have

ê(µ) =
Qf∑
q=1

θqf(µ) fq −
N∑
n=1

Qa∑
q=1

unθ
q
a(µ) aq,n

with fq, aq,n ∈Xh such that

(fq,vh)Xh
= fq[vh],

(aq,n,vh)Xh
= aq[ξn,vh],

for all vh ∈Xh using the Riesz representation theorem. In practice, this corresponds
to solving a linear system using the mass matrix associated with the scalar product
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(·, ·)Xh
. We finally write

‖ê(µ)‖2Xh
=

Qf∑
q,m=1

θqf(µ)θmf (µ) (fq, fm)Xh

− 2<

[
N∑
n=1

Qf∑
m=1

Qa∑
q=1

un θmf (µ)θqa(µ) (fm, aq,n)Xh

]

+
N∑

n,k=1

Qa∑
q,m=1

unuk θ
q
a(µ)θma (µ) (aq,n, am,k)Xh

.

Now, one can observe that the quantities

R1
q,m = (fq, fm)Xh

, R2
m,q,n = (fm, aq,n)Xh

, R3
q,n,m,k = (aq,n, am,k)Xh

can be precomputed, i.e., they are parameter independent during the Offline process,
once the reduced basis is assembled. Therefore the a posteriori estimate can be
computed independently of N by

η(µ) =
1

βLB(µ)

(
Qf∑

q,m=1

θqf(µ)θmf (µ) R1
q,m − 2<

[
N∑
n=1

Qf∑
m=1

Qa∑
q=1

un θmf (µ)θqa(µ) R2
m,q,n

]

+
N∑

n,k=1

Qa∑
q,m=1

unuk θ
q
a(µ)θma (µ) R3

q,n,m,k

 1
2

. (3.4)

3.3. Implementation of the Successive Constraint Method for complex
matrices. The Successive Constraint Method (SCM) is an offline-online procedure
where the online part consists of providing, for each new parameter value µ ∈ P , a
lower bound βLB (and upper bound βUB) of the inf-sup constant defined by (3.2), i.e.
0 < βLB(µ) ≤ βh(µ) ≤ βUB(µ). The SCM is discussed in [8, 3, 4] but for the sake of
completeness we nevertheless present the method in full detail here. Different from
the presentation in [3], where the real and imaginary parts of a complex matrix are
decoupled in the SCM, we improve the algorithm by fully utilizing the properties of
Hermitian matrices.

The underlying idea of the SCM is that computing the inf-sup constant can be
viewed as an optimization problem. We first note that the inf-sup constant introduced
in (3.2) can be properly written as

βh(µ) = inf
vh∈Xh

sup
wh∈Xh

a[vh,wh;µ]
‖vh‖Xh

‖wh‖Xh

.

Introducing the operator A(µ) : Xh 7→Xh associated to the sesquilinear form a[·, ·;µ] :
Xh×Xh 7→ C such that (A(µ)vh,wh)Xh

= a[vh,wh;µ] for all vh,wh ∈Xh we notice
that

βh(µ) = inf
vh∈Xh

‖A(µ)vh‖Xh

‖vh‖Xh

.

Squaring the previous expression results in

(βh(µ))2 = inf
vh∈Xh

(A(µ)vh, A(µ)vh)Xh

‖vh‖2Xh

.

11



We are therefore interested in computing the lowest generalized eigenvalue of the
parameter-dependent matrix A∗A(µ).

3.3.1. Offline procedure of SCM. Assume for now that the matrix A∗A is a
linear combination of semi-positive Hermitian matrices, i.e.,

A∗A(µ) =
Q̂∑
q̂=1

zq̂(µ)Zq̂ (3.5)

such that all zq̂ are real and Zq̂ are semi-positive and Hermitian, and thus have only
real non-negative eigenvalues. This is a key-feature of the SCM and a way to achieve
this is discussed in Section 3.3.3. We can then continue in a standard fashion as
described in [3] by noting that

αh(µ) = inf
vh∈Xh

Q̂∑
q̂=1

zq̂(µ)
(vh, Zq̂vh)Xh

‖vh‖2Xh

, (3.6)

for αh(µ) = (βh(µ))2.
The underlying idea of the SCM is to interpret the right hand side of (3.6) as a

minimization problem of the functional

I : P × RQ̂ −→ R

(µ,y) 7−→ I(µ,y) =
Q̂∑
q̂=1

zq̂(µ) yq̂

over the set of admissible solutions

Y =

{
y = (y1, . . . , yQ̂) ∈ RQ̂

∣∣∣∣∣ ∃vh ∈Xh s.t. yq̂ =
(vh, Zq̂vh)Xh

‖vh‖2Xh

, 1 ≤ q̂ ≤ Q̂

}
.

Then

αh(µ) = min
y∈Y

I(µ,y)

and a lower and upper bound can be found by enlarging resp. restricting the admis-
sible set of solution vectors y by introducing YUB ⊂ Y ⊂ YLB and then defining

αLB(µ) = min
y∈YLB

I(µ,y), and αUB(µ) = min
y∈YUB

I(µ,y).

The remaining question consists of how to design the spaces YUB and YLB in an easy
way, but such that any target accuracy can be achieved for the quantity

1− αLB(µ)
αUB(µ)

.

As for the reduced basis method the SCM is an offline-online procedure where during
the computing intensive offline stage generalized eigenvalue problems of size N need
to be solved, but where the online stage is N -independent and thus can be used in
combination with the online stage of the reduced basis method, as explained in Section
3.2.

12



Denote by Pa the restriction of P to the set of actively varying parameters of the
form a[·, ·; ·]. In our case the only active parameter for the sesquilinear form is the
wavenumer k. Then, the n-th iteration of the offline procedure takes the following
form: Assume that:

1. We know αh(µj), 1 ≤ j ≤ n, for some parameter values Cn = {µ1, . . . ,µn} ⊂
Pa.

2. Let Ξ ⊂ Pa be a fine and finite point-set discretization of Pa. For each µ ∈ Ξ,
we know some lower bound αn−1

LB (µ) of αh(µ) from the previous iteration. For
n = 1, set α0

LB(µ) = 0.
Thus αh(µj) corresponds to the smallest eigenvalue of the generalized eigenvalue
problem (

vh, A
∗A(µj)w

j
h

)
Xh

= αh(µj)
(
vh,w

j
h

)
Xh
, ∀vh ∈Xh. (3.7)

The collection of smallest eigenvalues provides a set of eigenfunctions {wj
h}nj=1 and

corresponding vectors {yj}nj=1 such that

(yj)q̂ =
(wj

h, Zq̂w
j
h)Xh

‖wj
h‖2Xh

, 1 ≤ q̂ ≤ Q̂, 1 ≤ j ≤ n.

Then, we set

Yk
UB(Cn) =

{
yj
∣∣ 1 ≤ j ≤ n} ,

which is clearly a subset of Y . This means that for YUB we use a finite set of pre-
computed vectors yj . Also, computing αnUB(µ) = miny∈Yn

UB
I(µ,y) only consists of

forming the functional I for a finite number of yj , which is independent of N .
On the other hand, for YLB we first define a rectangular box B =

∏Q̂
q̂=1[σ−q̂ , σ

+
q̂ ] ⊂

RQ̂ that contains Y by setting

σ−q̂ = inf
vh∈Xh

(vh, Zq̂vh)Xh

‖vh‖2Xh

and σ+
q̂ = sup

vh∈Xh

(vh, Zq̂vh)Xh

‖vh‖2Xh

.

This corresponds to the smallest and largest eigenvalues of a generalized eigenvalue
problem for each q̂ and can be computed once and for all in the beginning of the
algorithm. However, in order to have as small as possible a set YLB containing Y we
need to impose some additional restrictions. These constraints will depend on the
value of the actual parameter µ and we distinguish between two types:

1. Constraints based on the exact eigenvalues for some close (in parameter space)
parameters out of the set Cn.

2. Constraints based on the previous lower bounds αn−1
LB for some neighbour

parameter values.
Observe that, in contrast to YUB, the space YLB will change with variation of the
parameter µ. We introduce the function that provides close parameter values

PM (µ;E) =
{
M closest points to µ in E if card(E) > M,
E if card(E) ≤M,

for E = Cn and E = Ξ. For some Mα and Mp, we then define

Yn
LB(µ) =

{
y ∈ B

∣∣∣ I(µ′,y) ≥ αh(µ′), ∀µ′ ∈ PMα(µ; Cn),

I(µ′,y) ≥ αn−1
LB (µ′), ∀µ′ ∈ PMp(µ; Ξ)

}
.

13



As consequence, we have the property that

Y1
LB(µ) ⊂ Y2

LB(µ) ⊂ . . . ⊂ Yn
LB(µ) ⊂ . . . ⊂ Y ⊂ . . . ⊂ Yn

UB ⊂ . . . ⊂ Y2
UB ⊂ Y1

UB.

Note that solving αnLB(µ) = miny∈Yn
LB(µ) I(µ,y) corresponds to a Linear Program (LP)

of Q̂ design variables and 2Q̂+Mα +Mp conditions. This is independent of N .
Having defined the two sets Yn

LB(µ) and Yn
UB, we can define a greedy selection

in order to enrich the space Cn and build Cn+1 at all stages of n. The algorithm is
defined as follows.

Given some error tolerance Tol, some initial set C1 = {µ1} and n = 1 do:

1. For each µ ∈ Ξ:
a. Compute the upper bound αnUB(µ) = miny∈Yn

UB
I(µ,y).

b. Compute the lower bound αnLB(µ) = miny∈Yn
LB(µ) I(µ,y).

c. Define the error estimate η(µ) = 1− αnLB(µ)
αnUB(µ) .

2. Select µn+1 = arg maxµ∈P η(µ) and set Cn+1 = Cn ∪ {µn+1}.
3. If maxµ∈P η(µ) ≤ Tol, stop.
4. Solve the generalized eigenvalue problem (3.7) associated to µn+1,

store yn+1.
5. Set n := n+ 1 and goto 1.

3.3.2. Online procedure of SCM. Once the Offline-procedure as described
above is finished, we denote Yn

LB(µ) by YLB(µ) and Yn
UB by YUB.

For any arbitrary parameter value µ ∈ P , we can then compute a lower bound
αLB(µ) by only retaining the information about αh(µ) for all µ ∈ Cn and αLB(µ) for
all µ ∈ Ξ: For any new µ ∈ P , find the solution of

αLB(µ) = min
y∈YLB(µ)

I(µ,y),

which consists again of a Linear Program with Q̂ design variables and 2Q̂+Mα +Mp

constraints.

3.3.3. Affine decomposition for complex matrices. Here we discuss how
the affine decomposition (3.5) of the square of the operator can be obtained. Based
on the affine decomposition (2.10) we introduce the family of parameter independent
operators resp. matrices Aq : Xh 7→ Xh such that (Aqvh,wh)Xh

= aq[vh,wh], and
thus A(µ) =

∑Qa

q=1 θ
q
a(µ) Aq. As a consequence,

A∗A(µ) =
Qa∑

q,m=1

θma (µ)θqa(µ) A∗mAq

=
Qa∑
q=1

θqa(µ)θqa(µ) A∗qAq +
Qa∑
q=1

Qa∑
m=q+1

[
θma (µ)θqa(µ) A∗mAq + θqa(µ)θma (µ) A∗qAm

]
.

14



For sake of short notation denote zmq = θma (µ)θqa(µ) and observe that zqm = zmq .
Therefore

zmqA
∗
mAq + zqmA

∗
qAm

= zmqA
∗
mAq + zmqA

∗
qAm

= <(zmq)(A∗mAq + A∗qAm) + i=(zmq)(A∗mAq − A∗qAm)

= <(zmq)(Am + Aq)∗(Am + Aq) + =(zmq)(Am + iAq)∗(Am + iAq)
− [<(zmq) + =(zmq)] A∗qAq − [<(zmq) + =(zmq)] A∗mAm,

respectively

A∗A(µ)

=
Qa∑
q=1

[
zqq −

Qa∑
m=q+1

[<(zmq) + =(zmq)]

]
A∗qAq −

Qa∑
q=1

Qa∑
m=q+1

[<(zmq) + =(zmq)] A∗mAm

+
Qa∑
q=1

Qa∑
m=q+1

<(zmq)(Am + Aq)∗(Am + Aq) + =(zmq)(Am + iAq)∗(Am + iAq)

=
Qa∑
q=1

[
zqq −

q−1∑
m=1

[<(zqm)−=(zqm)]−
Qa∑

m=q+1

[<(zmq) + =(zmq)]

]
A∗qAq

+
Qa∑
q=1

Qa∑
m=q+1

<(zmq)(Am + Aq)∗(Am + Aq) + =(zmq)(Am + iAq)∗(Am + iAq),

where the second equality follows from reordering the coefficients corresponding to
the terms A∗mAm and interchanging the indices m and q. We are therefore able to
write A∗A as a linear combination of semi-positive Hermitian matrices, i.e.,

A∗A(µ) =
Q̂∑
q̂=1

zq̂(µ)Zq̂

for Q̂ = Q2
a and using an appropriate re-indexing.

4. Numerical results. In the following we provide a number of tests to verify
the results above and demonstrate the accuracy and efficiency of the overall frame-
work. To keep things simple and consistent, we consider scattering examples based
on the shapes illustrated in Figures 4.1, 4.2, and 4.3 through their meshes.

4.1. Successive Constraint Method. We first test the SCM on its own, un-
related to the reduced basis method.

4.1.1. Influence of Mα and Mp. The first series of tests consists of analyzing
the dependence of the convergence onMα andMp. Higher values of those two numbers
implies more work for evaluating the lower bound of the inf-sup constant, playing an
important role during the online stage of the reduced basis method. The convergence
of the SCM is however expected to be faster than for smaller values.

To analyze the dependence on the convergence of the SCM we consider the sphere
discretized as illustrated in Figure 4.1 and a range of wave-numbers k ∈ [1, 3]. The
profile of the inf-sup constant is presented in Figure 4.4. Note the presence of the
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Fig. 4.1. Coarse sphere. Fig. 4.2. Fine sphere. Fig. 4.3. Cavity.

first interior resonant wave number at k1 = 2.743. Figure 4.5 shows the convergence
for varying M = Mp = Mα = 5, 10, 15, 20, 25, Figures 4.6 and 4.7 the convergence for
fixed Mp = 15 resp. Mα = 15 and Mα = 5, 10, 15, 20, 25 resp. Mp = 5, 10, 15, 20, 25.
We notice that for this example it is required that Mα > 10 for a proper convergence
and it seems that Mp does not have a major influence, at least in this particular
example, on the convergence rate.

1 1.5 2 2.5 3
k

0

2

4

6

8

10

12

Fig. 4.4. Profile of the inf-sup constant for
k ∈ [1, 3].
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Fig. 4.5. Convergence behavior of the
SCM under variation of M = Mα = Mp =
5, 10, 15, 20, 25.
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Fig. 4.6. Convergence behavior of the SCM
under variation of Mα = 5, 10, 15, 20, 25 for a
fixed Mp = 15.
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Fig. 4.7. Convergence behavior of the SCM
under variation of Mp = 5, 10, 15, 20, 25 for a
fixed Mα = 15.

Physically more interesting is to increase the interval of wave numbers under con-
sideration. We now consider k ∈ [1, 5] which requires the use of a finer discretization
of the sphere, c.f. Figure 4.2, to guarantee 10 degrees of freedom per wavelength.

The parameters of the SCM are set to Tol = 0.1, Mα = M+ = 20 and Figure
4.8 shows the convergence of the SCM in this case. Figure 4.9 plots the lower and
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upper bound of the inf-sup constant and the parameter values that were chosen during
the greedy algorithm. One can observe that the resonant wave-numbers k1 = 2.743,
k2 = 3.870, k3 = 4.493 and k4 = 4.973 (c.f. [1, Table 6.1])are causing the inf-sup
constant to be (close to) zero.

0 20 40 60 80 100 120 140 160 180
N

0.1

1

Fig. 4.8. Convergence of SCM for k ∈ [1, 5] using a sphere as geometry (Figure 4.2) and
Tol = 0.1, Mα = M+ = 20.
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Fig. 4.9. Lower and upper bound of the inf-sup constant for k ∈ [1, 5] using a sphere as geometry
(Figure 4.2) and Tol = 0.1, Mα = M+ = 20. In addition, the chosen parameter values by the SCM
are indicated.

We finally consider the cavity illustrated in Figure 4.3 for a range of wave-numbers
k ∈ [10, 20], Tol = 10−3 and Mα = M+ = 20. The corresponding lower and upper
bound (indistinguishable) of the inf-sup constant is illustrated in Figure 4.11. One
can observe the various “negative peaks” where the inf-sup constant drops locally
due to near-resonances. We notice that the constant varies two orders of magnitude
which may have an essential impact on the a posteriori estimates of the reduced basis
method.
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N

0.001

0.01

0.1

1

Fig. 4.10. Convergence of SCM for k ∈ [1, 5] using the cavity (Figure 4.3) as geometry and
Tol = 10−3, Mα = M+ = 20.

4.2. Certified Reduced Basis Method. In this section, we present numerical
results of the certified reduced basis method, which relies on the SCM in order to
provide accurate a posteriori estimates.
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Fig. 4.11. Lower and upper bound (indistinguishable) of the inf-sup constant for k ∈ [10, 20]
using the cavity (Figure 4.3) as geometry and Tol = 10−3, Mα = M+ = 20.

We first consider the problem associated with the sphere presented in Figure 4.2
and an interval of wave-numbers k ∈ [4.52, 4.95]. As indicated in Figure 4.9 the EFIE
is not well-posed at the resonant wave-numbers and need to be excluded. Figure 4.12
shows the convergence of the maximal error (over the parameter space and measured in
the H(div,Ω)-norm) and the residual-based error estimation ηN , which, as described
in Proposition 3.1, is an upper bound of the error. The error profile during the last
iteration (N = 4) of the greedy-algorithm of the reduced basis method is illustrated
in Figure 4.13 as well as the chosen parameter values.
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N
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0.1 A posteriori estimate
Error

Fig. 4.12. Maximal error and a posteriori error estimation over the parameter space at each
step of the greedy-algorithm during the Reduced Basis assembling process for a sphere as in Figure
4.2 with k ∈ [4.52, 4.95].
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Fig. 4.13. Error profile over the parameter space at the last iteration of the greedy-algorithm
during the Reduced Basis assembling process for a sphere as in Figure 4.2 with k ∈ [4.52, 4.95].

Further, we reconsider the example using the cavity (Figure 4.3) as geometry and
having parameters k ∈ [10, 20] for

d̂ = −(sin(π/2), 0, cos(π/2)) and d̂0 = (sin(π/2), 0, cos(π/2)),
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so that we are considering the backscattering (monostatic) RCS. The polarization is
set to p̂ = 1√

2
(1, 0,−1). Observe that the only active parameter here is the wave-

number k. In Figure 4.14 we plot the convergence of the residual a posteriori estimate
and the corresponding error measured in the H(div)-norm. Figure 4.15 illustrates the
error profile over the parameter space at the last iteration (N = 23) and for N = 16
whereas Figure 4.16 shows the efficiency index

eff(µ) =
η(µ)

‖uh(µ)− uN (µ)‖Xh

depending on µ ∈ P for three different values of N . We observe that the a posteriori
estimate ηN is indeed an upper bound of the error (in the H(div,Ω)-norm) as indi-
cated by Proposition 3.1 except close to parameter values that are chosen during the
sampling strategy. At such points, the error and error estimate are very small (even
theoretically equal to zero at the sample points), in practical computations rounding
errors however dominate. This may lead that the efficiency index is smaller than one.

Figure 4.17 illustrates the RCS signal for values k ∈ [10, 20] based on the reduced
basis approximation and the truth solver (the boundary element method), including
the upper and lower error bars according to Proposition 3.5 for N = 21, N = 22 and
at the final iteration N = 23.

Finally, in Figure 4.18 the error in the RCS (compared to the RCS computed the
truth solver which is the boundary element method in our case) and the certified error
bound is shown. We observe that the error estimates well certify the error and that
the estimation is in general pessimistic.
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Fig. 4.14. Maximal error and a posteriori error estimation over the parameter space at each
step of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in Figure
4.3 with k ∈ [10, 20].

5. Concluding remarks. In the present work we have developed a complete
framework for the certified reduced basis method applied to the parametrized electric
field integral equation (EFIE). The parameters consist of the wave-number, the angle
and polarization of the incident plane wave.

We presented in detail how the rigorous a posteriori estimates, which are key
ingredients to certify the error tolerance of the model reduction, are developed in the
present case. An important feature is to give an estimate of the inf-sup constant,
that is parameter dependent, by means of the successive constraint method (SCM).
One particularity of the EFIE is that the SCM needed to be generalized to complex
matrices. Further, we derived error estimates that certify the error of the radar cross
section, which is a non-linear functional of the unknowns of the EFIE. Finally, we
presented some numerical examples to test the performance of the SCM and the
reduced basis method.
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Fig. 4.15. Error profile over the parameter space at iteration N = 16 (top) and N = 23
(bottom) of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in
Figure 4.3 with k ∈ [10, 20].
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Fig. 4.16. Efficiency of the error estimator over the parameter space for N = 10, 16, 23 during
the greedy-algorithm for the Reduced Basis assembling process for a cavity as in Figure 4.3 with
k ∈ [10, 20] and the sampling points for N = 23.
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Fig. 4.17. The radar cross section (RCS) for k ∈ [10, 20] using the reduced basis approximation
and the boundary element method including error bars for N = 21 (top), N = 22 (middle) and
N = 23 (bottom).
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Fig. 4.18. The error of the radar cross section (RCS) for k ∈ [10, 20] using the reduced basis
approximation and the certified error estimation for the RCS at the final iteration N = 23.
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