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a b s t r a c t

The classic Lebesgue ANOVA expansion offers an elegant way to represent functions that
depend on a high-dimensional set of parameters and it often enables a substantial reduc-
tion in the evaluation cost of such functions once the ANOVA representation is constructed.
Unfortunately, the construction of the expansion itself is expensive due to the need to eval-
uate high-dimensional integrals. A way around this is to consider an alternative formula-
tion, known as the anchored ANOVA expansion. This formulation requires no integrals
but has an accuracy that depends sensitively on the choice of a special parameter, known
as the anchor point.

We present a comparative study of several strategies for the choice of this anchor point
and argue that the optimal choice of this anchor point is the center point of a sparse grid
quadrature. This choice induces no additional cost and, as we shall show, results in a nat-
ural truncation of the ANOVA expansion. The efficiency and accuracy is illustrated through
several standard benchmarks and this choice is shown to outperform the alternatives over
a range of applications.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The analysis-of-variation – ANOVA – expansion provides an elegant way to represent functions that depend on a high-
dimensional set of parameters. As such it has been used in numerous applications during the last decade to represent
and efficiently manipulate high-dimensional problems and to enable one to take advantage of the inherent low-dimensional
interdependence, often found in many such problems. In [6] it was explored in the context of high-dimensional integration
methods, in [1] it was demonstrated in relation with parameterized partial differential equations and in [2] the ANOVA
expansion was utilized to develop a sensitivity index to enable the effective reduction of parametric dimensionality without
impacting the accuracy of the predicted output function.

However, the classic ANOVA expansion is projection based and this construction requires the use of high-dimensional
integration, rendering this construction very expensive. To address this challenge, an alternative formulation, named the an-
chored or Dirac ANOVA expansion, has been proposed [6]. It was also considered in [4] under the name CUT-HDMR. It relies
on expressing a function u(a) as a superposition of its values along lines, planes and hyperplane passing through an anchor
point b = (b1, . . . ,bp). As can be expected, the choice of this anchor point is closely tied to the overall efficiency and accuracy
of the expansion and making this choice correctly becomes a key element of the formulation. Unfortunately, there is no
known rigorous result of how to make this choice in a optimal way for general functions.

Recently, a number of techniques for making this choice have been proposed. A straightforward choice is to use an anchor
point chosen randomly in the high-dimensional space. While used widely it can not be expected to yield an optimal choice.
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In [13], it is suggested that the optimal anchor point is found as the trial point whose output is closest to the mean of the
function, being computed from a moderate number of quasi-random samples. A rigorous alternative, based on ideas of opti-
mal weights in quasi Monte Carlo methods, is proposed in [16] and shown to yield good results. Unfortunately, this approach
is only rigorous for functions that allow a dimensional variable separation. Both of these latter methods require some com-
putational work to identify the anchor point.

In this work, we propose to use the center point of a particular sparse grid quadrature as the anchor point and offer a
comparative study with the previously introduced methods mentioned above. An argument for this new approach is based
on the structure of the Smolyak sparse grid which is closely related to the anchored ANOVA expansion [6]. This anchor point
can be computed a minimal cost and we show that its use leads to a a very natural truncation of the anchored ANOVA expan-
sion when one is computing integrals of the expansion. While most past work have assumed that the parameters are uni-
formly distributed random variables, we also discuss the use of this approach when applied to cases where the parameters
are more general non-uniformly distributed random variables.

What remains of the paper is organized as follows. Section 2 introduces the ANOVA expansion based on the Lebesgue
measure and the Dirac measure, respectively. We also discuss the structure of the Smolyak sparse grid in this part. Section 3
introduces four strategies for the choice of the anchor point and in Section 4 we demonstrate the efficiency and accuracy of
the proposed anchor point through several examples. Section 5 contains a few concluding remarks.

2. The ANOVA expansion

We begin by introducing the ANOVA expansion and its two different representations based on different product mea-
sures. Without loss of generality, we take the integration domain D to be [0,1]p, and u 2L2ðDÞ. Take t to be any subset
of coordinate indices P ¼ f1; . . . ; pg with jtj denoting the cardinality of t. Let also at denote the jtj-vector that contains the
components of the vector a 2 [0,1]jtj indexed by t and take Ajtj to denote the jtj-dimensional unit hypercube defined as
the projection of the p-dimensional unit hypercube Ap onto the hypercube indexed by t. Assume dl to be a probability mea-
sure on Ap. Then u can be expressed as an ANOVA expansion [4,13]

uðaÞ ¼ u0 þ
X
t #P

utðatÞ; ð1Þ

where utðatÞ; t #P is defined recursively through

utðatÞ ¼
Z

Ap�jtj
uðaÞdlðaPntÞ �

X
w�t

uwðawÞ � u0; ð2Þ

starting with

u0 ¼
Z

Ap
uðaÞdlðaÞ;

Z
A0

uðaÞdlða;Þ ¼ uðaÞ: ð3Þ

Here dlðaPntÞ indicates integration over all coordinates except indices containing t. The total number of terms in the ANOVA
expansion is 2p.

The ANOVA expansion is a finite and exact expansion of a general high-dimensional function [4,13]. Furthermore, the
individual terms in the expansion are mutually orthogonal, i.e.Z

Ap
utðatÞuwðawÞdlðaÞ ¼ dtw ð4Þ

and, as a natural consequence of this, each term except u0 has a zero meanZ
Ap

utðatÞdlðaÞ ¼ 0; jtj > 0: ð5Þ

The computational realization of the ANOVA expansion is achieved through the recursive expression, (2), and the use of
orthogonality (4).

2.1. The Lebesgue expansion

In the classic ANOVA expansion, one assumes dl to be a Lebesgue measure in Eq. (1) and Eqs. (2) and (3) yield its real-
ization through high-dimensional integration.

Let us define the truncated ANOVA expansion of order s as

uða; sÞ ¼ u0 þ
X

t #P;jtj6s

utðatÞ; ð6Þ

where ut(at) and u0 are defined above.
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The concept of an effective dimension of a particular integrand was introduced in [7,8] and also discussed in [9] as a way
to reflect and utilize the observation that many high-dimensional functions are effectively low-dimensional. It was also ob-
served that the ANOVA expansion was particularly well suited from bringing out this hidden low dimensional nature.

The effective dimension is the smallest integer ps such thatX
0<jtj6ps

VtðuÞP qVðuÞ; ð7Þ

where q 6 1. Here Vt(u) and V(u) are defined by

VtðuÞ ¼
Z

Ap
ðutðatÞÞ2da; VðuÞ ¼

X
jtj>0

VtðuÞ; ð8Þ

and can be recognized as a measure of the variability of u when considering a given set t.
The relationship between the accuracy of the truncated ANOVA expansion and the superposition dimension is made clear

through the following result [11,12,15].

Theorem 1. Assume that the function u(a) has superposition dimension ps based on q and let u(a;ps) denote the truncated ANOVA
expansion of order ps. Then

Errða;psÞ 6 1� q;

where Err(a, ps) is the normalized approximation error defined by

Errða;psÞ ¼
1

VðuÞ

Z
Ap
½uðaÞ � uða; psÞ�

2da:

This shows that if the superposition dimension is small, ps� p, the function can be well approximated by just a few terms
in the ANOVA expansion. This allows one to reduce the cost of computing the expansion and reduce the cost of the subse-
quent evaluation of the expansion.

2.1.1. Sparse smolyak grids
To control the computational cost of evaluating the required high-dimensional integrals, Eqs. (2) and (3), a high-dimen-

sional efficient quadrature rule need to be considered. Here we use sparse grid methods based on the Smolyak construction
[10]. These allow one to construct sparse multivariate quadrature formulas based on sparse tensor products of one-dimen-
sional quadrature formulas.

Consider the numerical integration of a function u(a) over a p-dimensional unit hypercube Ap = [0,1]p,

I½u� :¼
Z

Ap
uðaÞda: ð9Þ

To introduce the algorithm, we choose a one-dimensional quadrature formula for a univariate function u as

Q1
l u ¼

Xn1
l

i¼1

xiu c1
i

� �
; ð10Þ

where xi represent the integration weights and c1
i reflect the quadrature points.

Now define a sequence

M
1
i u ¼ Q 1

i � Q 1
i�1

� �
u ð11Þ

with Q 1
0u ¼ 0 and for i 2 N+. Smolyak’s algorithm for the p-dimensional quadrature formula is then given as

Qp
l u ¼

X
jkj16lþp�1

M
1
k1
� � � � � M1

kp

� �
u; ð12Þ

for l 2 n and k ¼ ðk1; . . . ; kpÞ 2 np. An alternative form of this last expression is

Q p
l u ¼

X
l6jkj16lþp�1

ð�1Þlþp�jkj1�1 p� 1
jkj1 � l

� �
Q 1

k1
� � � � � Q 1

kp

� �
u: ð13Þ

For other equivalent expressions, see [14].
Equation (13) clearly only depends on function values at a finite number of points. To highlight the structure of the quad-

rature points, let

cki ¼ cki
1 ; . . . ; cki

n1
l

� 	
� ½0;1�; ð14Þ
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denote the one-dimensional quadrature grid corresponding to Q 1
ki

u;1 6 ki 6 p. The tensor product in Eq. (13) depends on
ck1 � � � � � ckp and the union of these

Xp
l ¼

[
l6jkj16lþp�1

ck1 � � � � � ckp
� �

ð15Þ

is called the sparse grid, used to evaluate (13). If ck is a nested set, Xp
l � Xp

lþ1 and Eq. (15) simplifies

Xp
l ¼

[
jkj1¼lþp�1

ck1 � � � � � ckp
� �

; ð16Þ

which is more compact than Eq. (15). In this work we use a sparse grid based on the Gauss–Patterson quadrature points
when possible. This is hierarchical and the most efficient approach when one considers attainable accuracy for a given com-
putational cost [3,5].

To illustrate the efficiency and accuracy of the Lebesgue ANOVA expansion and the concept of the effective dimension, we
consider a p-dimensional oscillatory function,

u1ðaÞ ¼ cos 2px1 þ
Xp

i¼1

ciai

 !
; ð17Þ

proposed in [18,19] as a suitable test function for high-dimensional integration schemes. Both ci and x1 are generated as
random numbers and we consider p = 10 as a test case.

Figure 1 shows the accuracy and the computational cost of the Lebesgue ANOVA expansion measured in both the L2 norm
and the L1 norm. Clearly, the 4th-order truncated expansion represents the function well down to an accuracy below 10�10.
However, this accuracy comes at considerable computational cost due to the evaluation of the high-dimensional integrals.

2.2. The Dirac expansion

Now assume that dl is a Dirac measure located at the anchor point b = (b1,b2, . . . ,bp) 2 [0,1]p. This leads to what is known
as the anchored or the Dirac ANOVA expansion.

The recursive formula Eq. (2) and the initial formula Eq. (3) now takes the forms

utðatÞ ¼ uðb1; . . . ; bi1�1;a1;bi1þ1; . . . ;bi2�1;a2; bi2þ1; . . . ;bijtj�1;ajtj;bijtjþ1; . . . ;bpÞ �
X
w�t

uwðawÞ � u0; ð18Þ

and

u0 ¼ uðb1;b2 . . . bpÞ: ð19Þ

The computational realization of the anchored ANOVA expansion is considerably more efficient than the Lebesgue ANOVA
expansion as there is no need to evaluate high-dimensional integrals in Eqs. (18) and (19).

Let us again consider the example in Eq. (17). In Fig. 2 we illustrate that errors are again reduced to below 10�12 with the
4th-order anchored ANOVA expansion with the anchor point taken to be (0,0, . . . ,0). With a comparable accuracy, the
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Fig. 1. On the left, we show the L2 and the L1 errors of the 6th-order truncated Lebesgue ANOVA expansion with increasing number of terms. The right
shows the associated computational time.
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anchored ANOVA expansion is achieved at a fraction of the time required for the classic ANOVA expansion. For higher dimen-
sional problems, the gain can be expected to be even more significant.

3. Strategies for choosing the anchor point

A key element in the anchored ANOVA expansion is the choice of the anchor point as this directly impacts the accuracy of
the ANOVA expansion and the truncation dimension and, hence, the total cost of evaluating the expansion.

A number of strategies have been proposed for choosing the anchor point and we will briefly summarize these below be-
fore arguing for an alternative approach.

A simple approach is to randomly choose a point as the anchor point. This is clearly straightforward and with negligible
cost. However, there are no guarantees for the accuracy of this approach and, as we shall see, it generally leads to an ANOVA
expansion of poor quality,

In [13] it was suggested to chose an anchor point based on a moderate number of function evaluations to estimate the
mean, denoted �u, through a number of quasi-random trial points in [0,1]p. The anchor point is then chosen to be the trial
point whose output is closest to the mean of the function. This guarantees that the zero order term approximates the func-
tion as accurate as possible but does not offer any guarantees for the quality of the higher order terms. While there is a cost
associated with the computation of the anchor point through the sampling, an obvious advantage is that this generalizes to
the case of non-uniformly distributed parameters. In the following we shall refer to the mean anchor point as one chosen
using this approach.

In [16], an alternative approach for choosing the anchor point for a more restricted class of problem of the type

uðaÞ ¼
Yp

j¼1

ujðajÞ; ð20Þ

was developed. This technique, based on analysis borrowed from quasi Monte Carlo methods, is expressed by defining the
dimensional weights cj, j = 1, . . . ,p, as

cj ¼
kuj � ujðbjÞk1
jujðbjÞj

; uðbÞ – 0: ð21Þ

where b = (b1,b2, . . . ,bp) is the anchor point. With the goal to minimize cj, [16] proves the following result.

Lemma 2. Assume that the anchored-ANOVA expansion is truncated at order ~v and that p~v satisfiesXp

m¼~vþ1

X
jSj¼m

Y
j2S

cj ¼ ð1� p~vÞ
Yp

j¼1

ð1þ cjÞ � 1

 !
: ð22Þ

Then, the relative error in L1 can be estimated as

ku�
P
jSj6~vuSkL1

kukL1

6 ð1� p~vÞ
Yp

j¼1

ð1þ cjÞ � 1

 ! Yp

j¼1

jujðbjÞj
kujkL1

 !
: ð23Þ
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Fig. 2. On the left, we show the L2 and the L1 errors of the 6th-order truncated anchored ANOVA expansion with an increasing number of terms. The right
shows the associated computational time.
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Furthermore, for one-signed functions with the anchor point b = (b1,b2, . . . ,bp) selected as

ujðbjÞ ¼
1
2
ðmax
½0;1�

ujðajÞ þmin
½0;1�

ujðajÞÞ; ð24Þ

the corresponding cj minimizes the weights in Eq. (21).
This method is limited to functions with separated variables, (20), and the computation of (24), albeit one-dimensional in

nature, can be costly. While developed for uniformly distributed parameters, this approach can be extended to include more
general distributions by generalizing the theory with appropriate L1 norms. In the following, we shall refer to the extremum
anchor point as one chosen using this approach.

3.1. Anchor point as center of sparse grid quadrature

An intuitive alternative is to simply choose the centroid point in the parameter space. For uniformly distributed param-
eters this can be expected to work well. However, for the more general situation with non-uniformly distributed variables, it
is reasonable to generalize this choice of the anchor point to that of the centroid of the lowest dimensional tensorial Gaussian
quadrature in the p-dimensional space. The quadrature should be chosen to reflect the proper measure associated with the
non-uniformly distributed parameter.

As simple as choosing the anchor as the centroid of the tensorial quadrature is, its utilization is highlighted when recalling
that one often seeks to be able to effectively compute moments of the ANOVA expanded function using sparse grids. As we
shall show in the following theorem, there is a strong connection between between the anchored ANOVA expansion, the
sparse grid Smolyak construction, and the anchor point based on the centroid.

Theorem 3. Let u(a) be a p-dimensional integrable function which is represented by the anchored ANOVA expansion located at the
anchor point b = (b1, . . . ,bp), chosen to be the centroid of the Smolyak sparse grid. Then, all terms of order l + 1 6 p or higher are
identically zero when evaluated at the p-dimensional l + 1 level sparse Smolyak grid.

Proof. Let dli, i = 1,2, . . . ,p be a Dirac measure on Ai and define the averaging operator

ðCiuÞðaÞ ¼
Z

Ai
uða1; . . . ;apÞdliðaiÞ ¼ uða1; . . . ;bi; . . . ;apÞ: ð25Þ

Let the identity be decomposed as

I ¼
Y

i

ðCi þ ðI � CiÞÞ ¼
Y

i

Ci þ
X

i

ðI � CiÞ
Y
i–j

Cj þ
X
i<j

ðI � CiÞðI � CjÞ
Y
k–i;j

Ck þ � � � þ
Y

i

ðI � CiÞ: ð26Þ

Each term of (1) is generated by each of the components of this decomposition (26) [17],

u0 ¼
Y

i

Ciu;

u1 ¼ ðI � CiÞ
Y
i–j

Cju;

..

. ..
. ..

.

ul ¼ ðI � CL1 ÞðI � CL2 Þ . . . ðI � CLl
Þ
Y
M–L

CMu;

ulþ1 ¼ ðI � CðLþ1Þ1 ÞðI � CðLþ1Þ2 Þ . . . ðI � CðLþ1Þlþ1
Þ

Y
N–ðLþ1Þ

CNu;

..

. ..
. ..

.

up ¼
Y

i

ðI � CiÞ:

ð27Þ

Without loss of generality, we consider the first term of the l + 1 order term of the anchored ANOVA expansion,

ulþ1ðaÞ ¼ ðI � CðLþ1Þ1 ÞðI � CðLþ1Þ2 Þ . . . ðI � CðLþ1Þlþ1
Þ

Y
N–ðLþ1Þ

CNuðaÞ

¼ ðI � CðLþ1Þ1 ÞðI � CðLþ1Þ2 Þ . . . ðI � CðLþ1Þlþ1
Þ
Z

Ap�n
uða1; . . . ;apÞdlðaNÞ

¼ ðI � CðLþ1Þ1 ÞðI � CðLþ1Þ2 Þ . . . ðI � CðLþ1Þlþ1
Þuða1; . . . ;alþ1;blþ2; . . . ; bpÞ: ð28Þ

where n = p � l � 1. Observe that Eq. (28) contains at most l + 1 variables (a1, . . . ,al+1).
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The l + 1 level sparse grid is given by (15)

Xp
lþ1 ¼

[
ðlþ1Þ6jkj16lþp

ðck1 � � � � � ckp Þ: ð29Þ

Assume now that there are l + 1 variables that are not solely defined at the centroid. Then

ki P 2; i ¼ 1; . . . ; lþ 1
kj ¼ 1; j ¼ lþ 2; . . . ;p

jkj1 ¼
Xlþ1

i¼1

ki þ
Xp

j¼lþ2

kj;

P
Xlþ1

i¼1

2þ
Xp

j¼lþ2

1;

¼ 2� ðlþ 1Þ þ p� ðlþ 1Þ;
¼ pþ lþ 1:

ð30Þ

which contradicts jkj1 6 lþ p in (29). Therefore, at least for one we have ki = 1, i = 1, . . . , l + 1, i.e., ci = bi must be the centroid
for ai.

Without loss of generality, let al+1 be this one. Eq. (28) becomes

ulþ1ðaÞ ¼ ðI � CðLþ1Þ1 Þ . . . ðI � CðLþ1Þlþ1
Þuða1; . . . al;blþ1;blþ2; . . . ;bpÞ;

¼ ðI � CðLþ1Þ1 Þ . . . ðI � CðLþ1Þl Þ½Iuða1; . . .al;blþ1; blþ2; . . . ; bpÞ;
� CðLþ1Þlþ1

uða1; . . .al;blþ1; blþ2; . . . ;bpÞ�; ð31Þ
¼ ðI � CðLþ1Þ1 Þ . . . ðI � CðLþ1Þl Þ½uða1; . . . al;blþ1;blþ2; . . . ;bpÞ � uða1; . . .al;blþ1; blþ2; . . . ; bpÞ�;
¼ 0:

It is not difficult to conclude that all m > l + 1 order terms of the expansion are zero by repeating this argument. This com-
pletes the proof. h

Apart from making the connection between the ANOVA expansion and the Smolyak sparse grid clear, an important impli-
cation of this result follows for evaluation of the moments of the anchored ANOVA expansion since one can decide exactly
how many levels of the sparse grid is meaningful for an expansion of a certain length. Note, however, that the above result
does not offer any measure of the accuracy of the expansion and, hence, the resulting moment.

4. Numerical examples

In the following we consider a comparative study of the different approaches for choosing the anchor point. We do this
using standard high-dimensional test functions and also offer a direct comparison of the accuracy of the anchored ANOVA
expansion to that of the Lebesgue ANOVA expansion for a high-dimensional system of ordinary differential equations.

4.1. Integration of high-dimensional functions

To measure the accuracy of the ANOVA expansion we define a measure of relative error of an integral as

�tr ¼
j
R

Ap uðaÞda�
R

Ap utrðaÞdaj
j
R

Ap uðaÞdaj ; ð32Þ

where utr(a) is the truncated ANOVA expansion.
We consider the classic test functions [18,19] and one additional test example:

	 Product Peak function: u2ðaÞ ¼
Qp

i¼1ðc�2
i þ ðai � niÞ2Þ�1,

	 Corner Peak function: u3ðaÞ ¼ 1þ
Pp

i¼1ciai
� ��ðpþ1Þ,

	 Gaussian function: u4ðaÞ ¼ exp �
Pp

i¼1c2
i ðai � niÞ2

� �
,

	 Continuous function: u5ðaÞ ¼ exp �
Pp

i¼1cijai � ni

� �
j,

	 Quadrature test example: u6ðaÞ ¼ 1þ 1
p

� �pQp
i¼1ðaiÞ

1
p.

where the parameters c = (c1, . . . ,cp) and n = (n1, . . . ,np) are generated randomly. The parameter n acts as a shift parameter
and the parameters c are constrained. See [18,19] for the details. Recall that the test function u1 is defined in Eq. (17).
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4.1.1. Uniformly distributed variables
In the first set of tests, we assume that all variables, ai, i = 1,2, . . . ,10, are uniformly distributed random variables defined

on [0,1]p. We use a 10-dimensional 7-level sparse grids based on the one-dimensional Gauss–Patterson quadrature points to
compute the integrals and consider this to be the exact solution. 6-level sparse grids are used to integrate the anchored AN-
OVA expansion based on different choices of the anchor point.

In Fig. 3 we illustrate the relative error of the integrals recovered with different choices of the anchor point. Note that for
most cases, the accuracy reaches 10�6 with the exception of the fifth test function where all choices lead to less accurate
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Fig. 3. Relative errors of the test functions computed using different strategies for choosing the anchor point. All variables are assumed to be uniformly
distributed. (i) u1, (ii) u2, (iii) u3, (iv) u4, (v) u5, (vi) u6.
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result. This is associated with this particular test function, is caused by a limited smoothness in the random variables and has
also been reported by other authors [20].

While there are differences among the results, the choice of the centroid as the anchor appears to be superior to the alter-
native techniques in all cases. We also note that the results confirm the result in Theorem 3, i.e., with a 6-level sparse grid we
should not expect any additional improvements in the accuracy of the integrals when using more than 5 terms in the ANOVA
expansion,
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Fig. 4. Relative errors of the test functions computed using different strategies for choosing the anchor point. All variables are assumed to be beta-
distributed with c = 1/2, s = 1/3. (i) u1, (ii) u2, (iii) u3, (iv) u4, (v) u5, (vi) u6.
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4.1.2. Non-uniformly distributed elements
To further evaluate the accuracy and flexibility of using the center point of the associated sparse grid, let us again consider

the problems listed above but now assume that the variables are beta-distributed variables with c = 1/2 and s = 1/3, [21,22].
Here the standard probability density of a beta-distributed random variable x is given as

f ðx; c; sÞ ¼ xcð1� xÞs=Bðc; sÞ; 0 6 x 6 1; c > 0; s > 0: ð33Þ

where B(c,s) is the normalizing beta function.
A 10-dimensional 6-level sparse grid is used to compute the integrals as the reference solution and a 5-level sparse grid is

applied to compute the integral of the anchored ANOVA expansion. In Fig. 4 we show the results of the direct comparison
with the alternatives that are most immediately applicable. The overall conclusion remains the same as in the uniform case
and confirms the accuracy and flexibility of the approach suggested here.

4.1.3. A higher dimensional problem
Let use again consider the oscillatory function, (17), but this time with more dimensions. The sums of the coefficients of

the function are given in Table 1. We assume 10�4 to be an acceptable error in order to compare three different integration
methods.

In Fig. 5 we show results that confirm that the anchored ANOVA expansion is the most efficient method to integrate the
test function until the dimension of the problem becomes sufficiently high. When this happens naturally depends on the
problem in particular the cost of evaluating the function, i.e., for more complex and expensive function evaluations one
can expect there to be further advantages in using the ANOVA expansion over a Monte Carlo based technique.

4.2. Higher dimensional ODE

Let us finally consider a more complex problem and also use this to compare the accuracy of the Lebesgue and the an-
chored ANOVA expansions.

We consider a situation with p = 25 particles, each held fixed at a random position in a two-dimensional space [�a,a]2. Let
us furthermore assume that a single particle of unit mass is initially positioned at (0,0) and that it feels an acceleration
through Newtonian gravitational forces from all the other particles. This leads to a simple dynamical equation

Table 1
Sums of coefficients of the oscillatory function.

p: number of dimension.bp ¼
Pp

i¼1ci

p 5 10 15 20 25 30 35 40 45 50
bp 9.0 9.0 9.0 9.0 9.0 27 31.5 36 40.5 45
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Fig. 5. Computational costs of computing the integral of the oscillatory function using a sparse grids, the anchored ANOVA expansion with a sparse grid,
and Monte Carlo method. On the left are shown results based on a 5-level sparse grid and on the right a 4-level sparse grid is used. The computational cost
of the Monte Carlo is estimated from 15-dimensional and 40-dimensional test functions, respectively.
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€uðtÞ ¼
Xp

i¼1

mir̂i=r2
i ; uðt0Þ ¼ u0: ð34Þ

Here r̂i is the distance vector between the fixed particle i and the moving particle and ri is the Euclidian distance between the
fixed particle i and the moving particle. To endow this problem with a high-dimensional characteristic, we assume that all
the masses, mj, are uniformly distributed random variables with a mean of 1/(p + 1) and a 10% variance.

As a high-dimensional function of interest, we consider the kinetic energy at a fixed time (t = 8) and built an ANOVA
expansion of this. This is achieved by following the approach of [1] in which a second order polynomial between the kinetic
energy of the moving particle and the random masses of fixed particles is constructed through a least squares approximation.
This has been studied previously in [2] in a related context using a Lebesgue ANOVA expansion and we refer to that for fur-
ther details.

To validate the accuracy and efficiency of the anchored ANOVA expansion, we also compute the Lebesgue ANOVA expan-
sion using a Stroud-3 method [2] and a 25-dimensional level three sparse grid. We have used a 25-dimensional 3-level
sparse grid to implement the anchored ANOVA expansion.

In Figure 6 we show that there is only a slight difference in the L2 and the L1 errors in the Lebesgue ANOVA expansion
based on the Stroud-3 method and the sparse grid, confirming that the integration has converged and that the effective
dimension of the kinetic energy is indeed very low.

Figure 7 confirms that the second order truncated Lebesgue ANOVA expansion and the second orders truncated anchored
ANOVA expansion have the same accuracy. However, the latter is obtained at a cost which is more than two orders of mag-
nitude less. The three level Lebesgue ANOVA expansion is taken as the exact solution.

1 2 3 4 5 6 7 8 9 10
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

order of ANOVA expansion
1 2 3 4 5 6 7 8 9 10

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

order of ANOVA expansion

L2 error

L∞ error

L2 error

L∞ error

Fig. 6. Errors of the Lebesgue ANOVA expansion computed using a Stroud 3 method (left) and a 3-level sparse grid (right).
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Fig. 7. Errors of the Lebesgue ANOVA expansion (left) and the anchored ANOVA expansion (right).
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5. Concluding remarks

We have discussed two representations of high-dimensional functions using ANOVA expansions, resulting in the classic
Lebesgue ANOVA expansion and the anchored ANOVA expansion. Both of these can represent high-dimensional functions
well and often expose a low effective dimension, allowing for the effective evaluation of moments of the high-dimensional
functions without impacting the accuracy. However, the classic ANOVA expansion is expensive to construct due to the need
to accurately evaluate high-dimensional integrals. We therefore consider the anchored ANOVA expansion in more detail.

A key element in the anchored ANOVA expansion is the need to choose an anchor point as this choice impacts the accu-
racy of the expansion, or rather the number of terms needed in the expansion to achieve a desired accuracy. This choice is
therefore important from a practical point of view as longer expansions results in increased computational cost when eval-
uating moments.

We proposed a simple but efficient method for choosing the anchor point based on the structure of the Smolyak sparse
grid. The computation of the anchor point is straightforward and avoids any additional cost. The accuracy and flexibility of
this approach has been demonstrated for a number of standard test functions and found to compare favorably with several
alternative techniques. An additional advantage of this approach is that it generalizes to problems with non-uniformly dis-
tributed random variables.

The method was applied to study a more complex high-dimensional system of ordinary differential equations, yielding
excellent agreement with results obtained through a Lebesgue ANOVA expansion, yet achieved at considerable less cost.

The derivation of more rigorous error estimates for the anchored ANOVA expansion largely remains an open question but
with the close connection to the sparse grid integration discussed here, we hope to be able to report on this in the future.
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