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Reduced Basis in General Relativity: 
Select-Solve-Represent-Predict



Select-Solve-Represent-Predict (SSRP)

Full numerical relativity simulations of the Einstein equations are very 
expensive, even if only used to calibrate analytical models (Alessandra 
Buonanno’s talk). 

There is a need of a way of efficiently selecting the most relevant 
configurations to solve for, even in computationally less demanding models. 

Even if dealing with analytical approximations of gravitational waves, such as 
those used in searches of inspiral sources, the number of templates is in 
general very large. 

Example I: for binary neutron stars, around 70,000 inspiral templates are 
needed just to account for the mass of each black hole at one percent 
accuracy. 

Example II: One-mode searches can lose up to 15% of intermediate mass black 
holes events. However, two-mode catalogs lead to more than 1,000,000 



Select-Solve-Represent-Predict (SSRP)

A compact yet high accuracy representation of gravitational waves is 
advantageous for:

- Faster, cheaper data analysis for online searches and generate alerts for   
EM counterparts. 

- Being able to introduce spin effects. 

For any given any given number of optimal solutions one wants to predict 
other ones (interpolation) with high accuracy. 



Our requirements

Total cost to build CN is O(N)

Being able to sequentially select "on the fly" the most relevant points in 
parameter space to solve for, in a nearly optimal way.

Exploit the smooth dependence of GR with respect to parameter variation to 
achieve exponential convergence in the number of solutions. 

Yield nested catalogs that are hierarchically constructed,  and which for 
increasing accuracy can be extended by adding members

Constant complexity -- the cost of selecting a parameter value to solve for has 
to be independent of N

Being able to keep a tight control on the error of the catalog as an 
approximation of all possible solutions. 

Independent of the solution method (time integration schemes, finite 
differences, spectral dG, etc in the case of PDEs)

CN ⊂ CN+1 ⊂ CN+2 · · ·



Reduced Basis (RB)
RB is an approach for the Select-(Solve)-Represent-Predict paradigm.  

The selection process usually follows a greedy algorithm. 

It constructs a compact, global basis to represent waveforms instead of using local 
methods (“application specific spectral expansion”)

Approximate H (space of waveforms) by “best” linear combination of waveforms -- 
reduced basis.

Such waveforms can be optimally chosen so that the error in representing H by a 
reduced basis is minimized over the choice of N catalog members -- Kolmogorov N-
width:

For gravitational waves one expects the N-width to decay exponentially with N. 

However, finding a set of waveforms achieving the N-width is essentially a  
computationally intractable optimization problem. 
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Select and Represent: the Greedy algorithm (GA)

The GA instead selects a set of solutions that nearly satisfies the 
N-width
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H

Space of waveforms
"Training” 

�µ1
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C1 = {h�µ1}

1) Choose any parameter value from the 
training set and solve the eqs. for it

e1 = h(�µ1)

2) Greedy sweep - Find the parameter value 
that maximizes:

||h�µ − P1(h�µ)|| , P1(h�µ) = e1�e1, h�µ�

�µ2

e2

and solve the eqs. for it. Gram-Schmidt to 
get basis vector e2

C2 = {h�µ1 , h�µ2} , C1 ⊂ C2

3) Repeat: at each j-th step,

�µj = argmax�µ�h(�µ)− Pj−1(h(�µ))�



To what extent does the error in a catalog from the greedy algorithm 
approximate the Kolmogorov N-width catalog? [Binev et al. 2010]

Near optimality

dN (H) ≤ Ae
−cNα

Kolmogorov N-width

"Greedy error"

εN ≡ max
�µ

||h�µ − PN (h�µ)|| ≤ Be−dNβ

PN (h�µ) =
N�

i=1

�ei, h�µ�ei

If the greedy error is of the order of double precision numerical 
round-off then the projection of the waveform onto the reduced 
basis is essentially equal to the waveform itself

h�µ = PN (h�µ) + δh�µ(f) , ||δh�µ(f)|| ≤ εN



�s, h�µj � =
N�

i=1

�s, ei��ei, h�µj �

Using reduced bases to do a matched filter gravitational wave 
search would involve projecting the signal s onto the vector 
space

Idealized matched filter search with RB

The inner products of ei with the jth waveform template are an output of 
our algorithm -- stored and known

- There are only N inner product integrals to do for a given signal, s

- N is much smaller than the number of points in the original catalog, significantly 
reducing the number of overlaps needed to be computed for a search

Using RB does not increase the false alarm rate



Predict

Need a global, high accuracy interpolation at the points picked up by the 
greedy algorithm

A hierarchical process, where as more points are added, the previous ones and 
the associated computations to build the interpolation are reused -- constant 
complexity

Inexpensive

This is not standard polynomial interpolation. Instead, the bases are the 
members of the reduced basis. 

The Empirical Interpolation Method (EIM, Barrault et al. 2004)

If the error when building a reduced basis decays exponentially with the 
number of solutions, so does the interpolation one when using EIM (Maday et 
al. 2007). 

In the context of gravitational waves: Harbir Antil et al. (in progress)



What’s the big deal with interpolation?

What’s the big deal? Even my cat knows how to compute a spline interpolant



First, in order to preserve the accuracy of the reduced basis, which is global, 
you need to do a global interpolation

Second, you need to interpolate at an unstructured mesh (the greedy points), 
because that’s where you solved for

Ok, so what’s the big deal with doing a global interpolation? 
My dog could do that

Runge’s example

Global interpolation on unstructured meshes: Narayan et al. (in preparation)



2PN stationary-phase-approximation (SPA) “chirp” waveforms.
These are known in closed form, no need to solve for them.

RB catalogs for inspiral, non-spinning binaries

B = 0.0311, d = 0.299, β = 1.25εN = Be−dNβ

ε2
N = max

�µ

�
1 − Re�h�µ, PN (h�µ)�

�
= 1 − MM



BNS: Binary Neutron Stars, individual masses in the range [1,3] Solar Masses

BBH: Binary Black Holes, individual masses in the range [3,30] Solar Masses

Reduced Basis catalogs



Distribution of selected parameters
Metric placement 

MM = 0.97
Owen (1996)

Reduced Basis
MM = 1 - 2.5 x 10-13

(Inspiraling BNS, Initial LIGO)



A(nother) surprising result
What can we learn through RB at this stage, if anything, about 
fundamental properties of gravitational waves?

Imagine increasing the number of points in the training space

Training space 1 Training space 2

There is consequently a different and larger # of RBs

However, in all cases we found that for any finite range of 
masses the number of RBs asymptotes to a finite value as 
the number of points in the training space tends to infinity.

We conjecture that this is in general true.  



Example: 

Here shown for inspiraling BBH with component masses of 
[3-30] solar masses, 2PN SPA waveforms, and Initial LIGO
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x,

Example: 

For BNS with components of [1-3] solar masses, 2PN SPA 
waveforms, and for Initial LIGO

a = 921, b = −2090, c = −9.18× 105

N = a + bx−1/2 + cx−1Fit:

Not included in fit

921



The implication is that the space of waveforms is essentially a finite 
dimensional space since it can be represented by a finite number of 
RBs that yield errors smaller than double precision numerical round-
off
Similar findings more recently reported by Cannon, Kanna, Keppel 
(arXiv: 1101.4939)

Example: 

- Space of inspiral 2PN SPA waveforms of BNS for Initial LIGO can 
be codified in a 921-dimensional vector space

- Consequently a matched-filter search will only involve the 
computation of 921 overlap integrals

�s, h�µ� =
921�

i=1

�s, ei��ei, h�µ�

Output from 
RB algorithm



Including spin in non-precessing inspirals 
(in progress)

Chirp waveforms, each spin aligned or anti-aligned with the orbital angular 
momentum 

Masses chosen by the metric template placement approach with MM=0.97, Init. 
LIGO, for the individual masses

For each mass pair, we uniformly sample the dimensionless spin parameter at Ns 
values in the interval [-1,1]

Shown next: individual masses in the range [5,10] Solar Masses each, Ns=7 



VERY preliminary results

4,900 templates, 97 RBs

Selected waveforms mostly have small chirp mass and anti-aligned spins, 
or large mass and aligned spins. 



Two mode single black hole ringdown waveforms 
(Sarah Caudill, S. Field, C. Galley, F. Herrmann, MT, in progress)

Current ringdown searches use one mode (l=2,m=2) catalogs, which are rather 
small compared to the inspiral case. 

For example, for MM=0.01 and Adv LIGO, there are 1,956 templates, 17,599 for 
MM=0.001, etc.

For MM=e-4, there are 170,454 templates. And around 659 reduced bases are 
needed to represent them within double precision numerical roundoff. 

h(t) = Ae−πft/Q sin (2πft− φ)



To illustrate: metric 
template training set from a 

coarser MM ->



Two-mode catalogs
From the metric template placement for the (2,2) mode at MM=0.01 add a 

(3,3) one with Namp relative amplitudes in [0,1]

MM=0.01 x 99 amplitudes = 193,664 templates. 578 reduced bases to 
represent them within double precision numerical roundoff



RB provides an attractive method to efficiently generate hierarchical, 
compact, and nearly optimal waveform template banks when the waveforms 
are either known or must be computed "on the fly"

Provides a framework for selecting the optimal parameters for a future 
NRAR-type collaboration

Due to the exponential convergence, the number of RBs needed to achieve 
an error of the order of numerical round-off is very small. 

The space of waveforms is essentially finite dimensional.

Roadmap for the “near” to medium term future:

Interpolation
 
Inspiral-Merger-Ringdown EOB and phenomenological waveforms

Include precession at the post-Newtonian level

Gradually start looking at full numerical relativity RB simulations

Summary and roadmap


