THE PROBLEM WITH BOUNDARIES IN GENERAL RELATIVITY

Jeff Winicour

University of Pittsburgh

winicour@pitt.edu

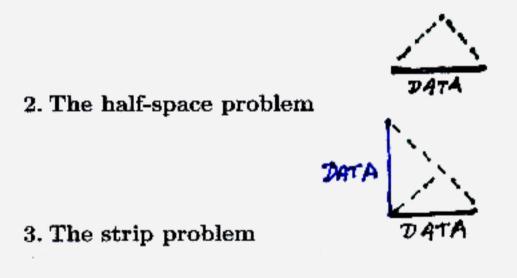
SOME THINGS I HAVE LEARNED FROM COMPUTATIONAL MATHEMATICIANS

BREAK COMPLICATED PROBLEMS UP INTO SIMPLER PROBLEMS

EMPLOY SIMPLE, DISCRIMINATING CODE TESTS

FINITE PROPAGATION SPEED OF HYPERBOLIC SYSTEMS IMPLIES PROBLEMS CAN BE TREATED PIECEWISE

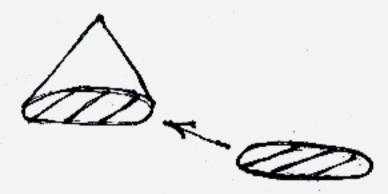
1. The Cauchy problem



WAVE EQUATIONS SHOULD BE TREATED IN SECOND ORDER FORM

"Initial-boundary value problems for second order systems of partial differential equations", Kreiss, Ortiz, Petersson

THE CAUCHY PROBLEM



DISEMBODIED CAUCHY DATA SUBJECT TO CONSTRAINTS $h_{ab} = k_{ab}$

DETERMINES WELL POSED
GEOMETRICALLY UNIQUE SPACETIME

WELL POSEDNESS REQUIRES STRONGLY HYPERBOLIC REDUCTION OF EINSTEIN'S EQUATIONS

2ND ORDER WAVE EQUATIONS
(harmonic formulation, Choquet-Bruhat)

OR

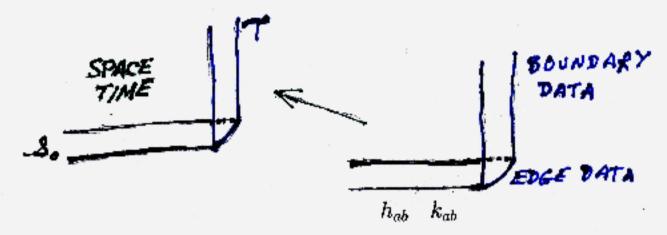
STRONGLY HYPERBOLIC FIRST ORDER FORMULATION (BSSN)

BUT NOT

XXX WEAKLY HYPERBOLIC (ADM)

APPLES WITH APPLES Class. Quant. Grav. 25, 125012 (2008)

THE INITIAL-BOUNDARY VALUE PROBLEM



GEOMETRIC UNIQUENESS ???

WELL POSEDNESS ???

REQUIRES SYMMETRIC HYPERBOLIC REDUCTION

USE Energy method - integration by parts

OR Fourier-Laplace method - pseudo-differential theory

H-O. Kreiss and J. Lorenz, "Initial-boundary value problems and the Navier-Stokes equations"

EARLY WORK - PARTIAL RESULTS

J. Stewart

G. Calabrese, J. Pullin, O. Reula, O. Sarbach, M. Tiglio

WELL POSED FORMULATIONS

Friedrich, Nagy: Energy treatment of

frame-connection-curvature formulation

Kreiss, Winicour: Pseudo-differential treatment of

harmonic formulation

Kreiss, Reula, Sarbach, Winicour: Energy treatment of

harmonic formulation

A COMPREHENSIVE UNDERSTANDING REMAINS AN OUTSTANDING PROBLEM

COMPLICATION OF BOUNDARY TREATMENT

ONLY HALF THE DATA IS PERMITTED

For scalar wave Φ can prescribe

Dirichlet data: $\partial_T \Phi = q$

 \mathbf{or}

Neumann data: $\partial_N \Phi = q$

 \mathbf{or}

Sommerfeld data: $K^{\mu}\partial_{\mu}\Phi=(\partial_{T}+\partial_{N})\Phi=q$

where K^{μ} is outgoing null direction

Same boundary data q leads to different solutions depending upon the boundary condition

CANNOT PRESCRIBE BOTH 3-METRIC AND EXTRIN-SIC CURVATURE

Instead, for example, give Sommerfeld data = $K^{\mu}\partial_{\mu}g_{\rho\sigma}$

THIS COMPLICATES CONSTRAINT ENFORCEMENT Hamiltonian and momentum constraints cannot be enforced directly.

DOMAIN OF DEPENDENCE OF BOUNDARY IS EMPTY
This couples the Cauchy problem with boundary problem

COMPLICATIONS WITH SOMMERFELD CONDITION

Sommerfeld data = $K^{\mu}\partial_{\mu}g_{\rho\sigma}$

BOUNDARY DOES NOT DETERMINE UNIQUE NULL DIRECTION

Resolution: Foliate boundary

WHAT IS GEOMETRIC NATURE OF ∂_{μ} ?

Resolution: Use Cauchy data to introduce

background metric

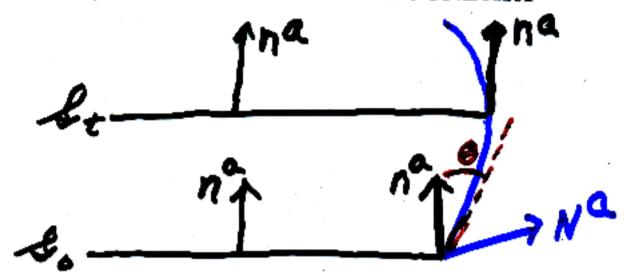
WHAT IS GEOMETRIC CONTENT OF SOMMERFELD DATA?

Acceleration and shear of K^{μ} relative to background

HOW DO YOU PRESCRIBE SOMMERFELD DATA?

For an isolated system, homogeneous data is a good approximation for a large spherical outer boundary

COMPLICATIONS FROM THE MOTION OF THE BOUNDARY



THE BOUNDARY MOVES RELATIVE TO THE CAUCHY HYPERSURFACES

 $N^a n_a = \sinh \Theta$

Unit outward normal to boundary N^a

Unit future normal to Cauchy hypersurfaces $n_a = -\alpha \nabla_a t$ (shift α)

GEOMETRIC SPECIFICATION OF THE BOUNDARY REQUIRES NON-SOMMERFELD DATA

e.g. (Friedrich-Nagy) MEAN EXTRINSIC CURVATURE

Variables satisfying advective equation

$$n^a \partial_a \Phi = \dots$$

pose difficulty at boundary if $\Theta \neq 0$

This forces a Dirichlet condition on the normal component of the shift in some 3+1 formulations

SIMPLE EXAMPLE OF STRONG WELL-POSEDNESS

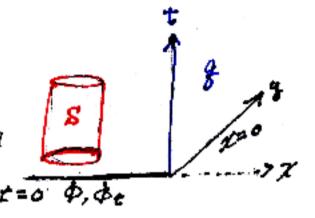
$$\phi_{tt} = \phi_{xx} + \phi_{yy} + S$$
, $-\infty < x \le 0$ periodic in y

Cauchy data:

$$\phi|_{t=0}$$
,

$$|\phi_t|_{t=0}$$

Boundary condition: $(\phi_t + \alpha \phi_x + \beta \phi_y)|_{x=0} = q$ $\alpha > 0$



Energy norm: $E = \frac{1}{2}(||\phi_t^2|| + ||\phi_x^2|| + ||\phi_y^2||), \quad ||F^2|| = \int F^2 dx dy$ Integration by parts:

$$\begin{split} \partial_t E &= \int \{\phi_{tt}\phi_t + \phi_{xt}\phi_x + \phi_{yt}\phi_y\} dx dy \\ &= \int \{(\phi_{xx} + \phi_{yy} + S)\phi_t + \phi_{xt}\phi_x + \phi_{yt}\phi_y\} dx dy \\ &\leq \int_{x=0} \phi_t \phi_x dy + \frac{1}{2}(||\phi_t^2|| + ||S^2||) \\ &\leq \int_{x=0} (-\alpha \phi_x - \beta \phi_y + q)\phi_x dy + E + \frac{1}{2}||S^2|| \\ &\leq \int_{x=0} (-\frac{\alpha}{2}\phi_x^2 + \frac{1}{2\alpha}q^2) dy + E + \frac{1}{2}||S^2|| - \beta \int_{x=0} \phi_y \phi_x dy \end{split}$$

So, if $\beta = 0$

$$\partial_t E + \frac{\alpha}{2} ||\phi_x^2||_B \le \frac{1}{2\alpha} ||q^2||_B + E + \frac{1}{2} ||S^2||_B$$

Similar estimates for $||\phi_t^2||_B$ and $||\phi_y^2||_B$ imply strong well-posedness:

$$E(T) + \int_0^T (||\phi_t^2||_B + ||\phi_x^2||_B + ||\phi_y^2||_B) dt$$

$$\leq const\{E(0) + \int_0^T (||q^2||_B + ||S^2||) dt\}$$

WHAT HAPPENS WHEN $\beta \neq 0$?

MAXWELL'S EQUATIONS

Symmetric hyperbolic system for \bar{E}, \bar{B} with trivial constraint propagation

$$C_B := \nabla \cdot \bar{B}$$

$$\partial_t C_B = -\bar{\nabla} \cdot \bar{\nabla} \times \bar{E} = 0$$

Similar to Friedrich, Nagy system, constraints propagate up the boundary

VECTOR POTENTIAL FORMULATION LORENTZ GAUGE

$$\eta^{\alpha\beta}\partial_{\alpha}\partial_{\beta}A_{\mu} = 0$$

$$C := \partial_{\alpha}A^{\alpha}$$

$$\eta^{\alpha\beta}\partial_{\alpha}\partial_{\beta}C = 0$$

Cauchy problem well posed, constraint preserving

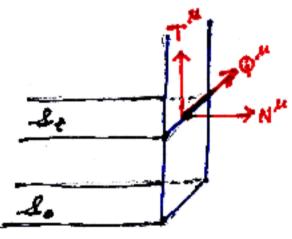
CONSTRAINT PRESERVING SOMMERFELD CONDITIONS

Null tetrad adapted to boundary

$$\eta_{\mu
u} = -K_{(\mu} L_{
u)} + Q_{(\mu} ar{Q}_{
u)} \ K^{\mu} = T^{\mu} + N^{\mu}, \quad L^{\mu} = T^{\mu} - N^{\mu}$$

$$\begin{split} K^{\mu}\partial_{\mu}(K^{\nu}A_{\nu}) &= q_{K} \\ K^{\mu}\partial_{\mu}(Q^{\nu}A_{\nu}) - Q^{\mu}\partial_{\mu}(K^{\nu}A_{\nu}) &= q_{Q} \\ -2\mathcal{C} &= K^{\mu}\partial_{\mu}(L^{\nu}A_{\nu}) + \left(L^{\mu}K^{\nu} - Q^{\mu}\bar{Q}^{\nu} - \bar{Q}^{\mu}Q^{\nu}\right)\partial_{\mu}A_{\nu} = 0 \end{split}$$

CONSTRAINT INVOLVES SIDEWAYS DERIVATIVES ON BOUNDARY BUT THESE SOMMERFELD CONDITIONS HAVE HIERARCHICAL, UPPER TRIANGULAR FORM WHICH GIVES RISE TO STRONG WELL POSEDNESS



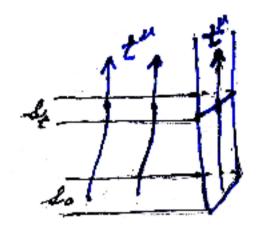
THE HARMONIC EINSTEIN SYSTEM

Fix an evolution field t^{μ}

All choices of t^{μ} are related by diffeomorphism and this fixes gauge

Use initial Cauchy data to determine a background metric by Lie transport

$$\mathring{m{g}}_{\mu
u}|_{t=0}=g_{\mu
u}|_{t=0}-\mathcal{L}_t\mathring{m{g}}_{\mu
u}=\mathcal{L}_tg_{\mu
u}|_{t=0}$$



The difference $f_{\mu\nu}=g_{\mu\nu}-oldsymbol{\dot{g}}_{\mu\nu}$ has homogeneous Cauchy data

$$f_{\mu\nu}|_{t=0} = 0$$
, $\mathcal{L}_t f_{\mu\nu}|_{t=0} = 0$

The difference in Christoffel symbols is tensor field

$$C^{
ho}_{\mu
u}=\Gamma^{
ho}_{\mu
u}-\mathring{\Gamma}^{
ho}_{\mu
u}=rac{1}{2}g^{
ho\sigma}\left(\mathring{
abla}_{\mu}f_{
u\sigma}+\mathring{
abla}_{
u}f_{\mu\sigma}-\mathring{
abla}_{\sigma}f_{\mu
u}
ight)$$

Assume generalized harmonic formulation with constraints

HARMONIC EINSTEIN EQUATIONS REDUCE TO QUASILINEAR WAVE SYSTEM

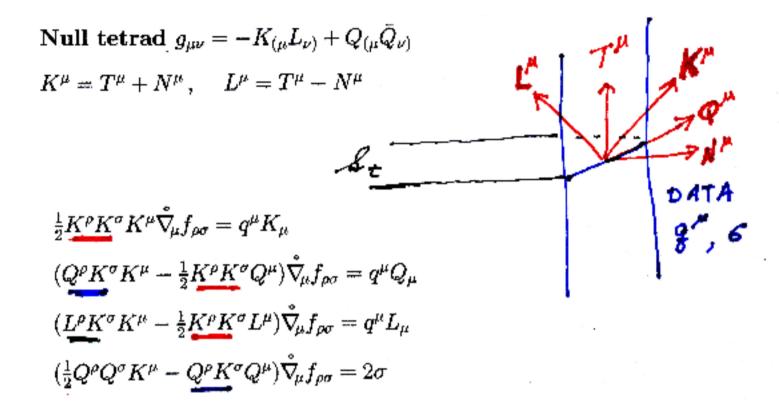
$$g^{\rho\sigma}\mathring{\nabla}_{\rho}\mathring{\nabla}_{\sigma}f_{\mu\nu} =$$
LOWER ORDER TERMS

BIANCHI IDENTITIES GOVERN CONSTRAINT PROPAGATION

$$\nabla^{\rho}\nabla_{\rho}C^{\mu} + R^{\mu}_{\rho}C^{\rho} = 0$$

CAUCHY PROBLEM IS WELL POSED

HIERARCHY OF SOMMERFELD BOUNDARY CONDITIONS



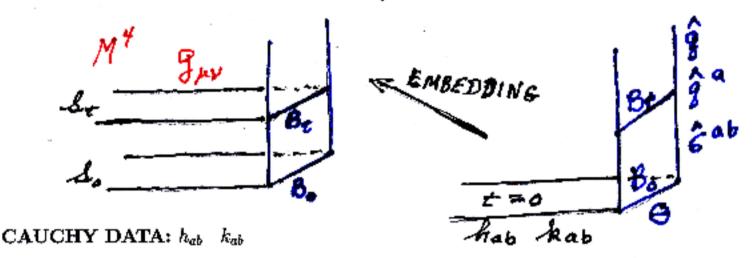
REMAINING SOMMERFELD CONDITIONS ENFORCE HARMONIC CONSTRAINTS $C^{\mu} = 0$ ON BOUNDARY

$$\begin{split} -2\mathcal{C}^{\mu}K_{\mu} &= \left(Q^{\rho}\bar{Q}^{\sigma}K^{\mu} + K^{\rho}K^{\sigma}L^{\mu} - K^{\rho}\bar{Q}^{\sigma}Q^{\mu} - K^{\rho}Q^{\sigma}\bar{Q}^{\mu}\right)\overset{\circ}{\nabla}_{\mu}f_{\rho\sigma} = 0\\ -2\mathcal{C}^{\mu}Q_{\mu} &= \left(L^{\rho}Q^{\sigma}K^{\mu} + K^{\rho}Q^{\sigma}L^{\mu} - K^{\rho}L^{\sigma}Q^{\mu} + Q^{\rho}Q^{\sigma}\bar{Q}^{\mu}\right)\overset{\circ}{\nabla}_{\mu}f_{\rho\sigma} = 0\\ -2\mathcal{C}^{\mu}L_{\mu} &= \left(L^{\rho}L^{\sigma}K^{\mu} + Q^{\rho}\bar{Q}^{\sigma}L^{\mu} - \bar{Q}^{\rho}L^{\sigma}Q^{\mu} - Q^{\rho}L^{\sigma}\bar{Q}^{\mu}\right)\overset{\circ}{\nabla}_{\mu}f_{\rho\sigma} = 0 \end{split}$$

SEQUENTIAL ORDER

 $(KK), (QK), (LK), (QQ), (Q\bar{Q}), (LQ), (LL)$ OF COMPONENTS $K^{\mu}\mathring{\nabla}_{\mu}f_{\rho\sigma}$ ENSURES A STRONGLY WELL-POSED INITIAL-BOUNDARY VALUE PROBLEM

DISEMBODIED HARMONIC DATA FOR A GEOMETRICALLY UNIQUE SPACETIME



BOUNDARY DATA: Foliation \mathcal{B}_t determined by evolution field t^a $\hat{q}, \quad \hat{q}^a, \quad \hat{\sigma}^{ab} \quad (\text{rank 2: } \hat{\sigma}^{ab} \nabla_b t = 0)$

EDGE DATA $\sinh \Theta$: Initial velocity of boundary

DISEMBODIED DATA DETERMINES UNIQUE SPACETIME UP TO DIFFEOMORPHISM

4D GEOMETRIC INTERPRETATION OF SOMMERFELD DATA

Outgoing null direction K^{μ}

Boundary normal N^{μ}

2-metric of \mathcal{B}_t $Q_{\mu\nu} = Q_{(\mu}\bar{Q}_{\nu)}$

Evolution field t^{μ} (gauge), $\mathcal{L}_t t = 1$

Background metric $\hat{g}_{\mu\nu}$ determined by Cauchy data

SOMMERFELD DATA IS ACCELERATION AND SHEAR OF K^{μ} RELATIVE TO BACKGROUND

$$q^{\mu} := \hat{q}N^{\mu} + \hat{q}^{\mu} = K^{\nu}(\nabla_{\nu} - \mathring{\nabla}_{\nu})K^{\mu}$$

 $\sigma = Q^{\mu}Q^{\nu}\hat{\sigma}_{\mu\nu} = Q^{\mu}Q^{\nu}(\nabla_{\mu} - \mathring{\nabla}_{\mu})K_{\nu}$

PHYSICAL CONTENT OF BOUNDARY DATA CLARIFIED BY CONSIDERING LINEARIZED PLANE WAVE

 q^{μ} related to gauge freedom

 σ describes the incoming gravitational radiation entering the boundary

Phys. Rev. D 80, 1204043 (2009) Gen. Rel. Gravit. 41, 1909 (2009)

NUMERICAL APPLICATION

IMPLEMENTATION IN HARMONIC CODES IS STRAIGHTFORWARD AND ROBUST

APPLES WITH APPLES BOUNDARY TESTS

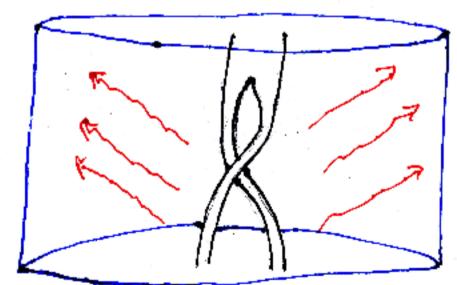
PITT harmonic code - Babiuc, Kreiss, Szilágyi, Winicour AEI harmonic code - Seiler, Szilágyi, Pollney, Rezzolla Caltech spectral harmonic code - Rinne, Lindblom, Scheel

 ψ_0 boundary condition - Buchman, Sarbach Ruiz, Rinne, Sarbach

2nd order Sommerfeld condition

$$\psi_0 = K^{\alpha} \partial_{\alpha} \sigma + \dots = Q^{\mu} Q^{\nu} (K^{\alpha} \partial_{\alpha})^2 g_{\mu\nu} + \dots$$

APPLICATION TO OUTER BOUNDARY OF ISOLATED SYSTEM



SET SOMMERFELD DATA TO ZERO

Setting $\psi_0 = 0$ gives $O(\frac{1}{R})$ less backreflection from outer boundary than setting $\sigma = 0$

APPLICATION TO OTHER FORMULATIONS

Geometric nature of Sommerfeld conditions allows formal application to any other metric formulation BUT ...

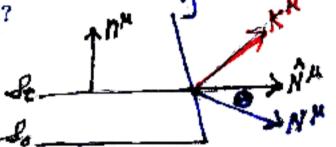
CHARACTERISTIC CODES - BONDI-SACHS SYSTEM

BASED UPON DIRICHLET BOUNDARY CONDITIONS

WELL POSEDNESS???

WHAT ABOUT 3+1 CODES?

$$egin{align} g_{\mu
u}&=-n_{\mu}n_{
u}+h_{\mu
u}\ &=-n_{\mu}n_{
u}+\hat{N}_{\mu}\hat{N}_{
u}+Q_{(\mu}ar{Q}_{
u)} \ & ext{so that}\ K^{
ho}=e^{-\Theta}(n^{
ho}+\hat{N}^{
ho}) \ \end{split}$$



Sommerfeld data (\hat{q}^a, σ) determines boundary values for components of $K^\rho \partial_\rho g_{\mu\nu}$ corresponding to all components of extrinsic curvature $k_{\mu\nu}$ except $Q^\mu \bar{Q}^\nu k_{\mu\nu}$

Remaining piece of Sommerfeld data $\hat{q}=q^{\mu}N_{\mu}$ determines the time derivative of the normal component of the shift

$$\beta_N = \beta^\mu N_\mu \qquad t^\mu = \alpha n^\mu + \beta^\mu$$

The harmonic constraint $C^{\mu}K_{\mu}$ determines the missing Sommerfeld data for $Q^{\mu}\bar{Q}^{\nu}k_{\mu\nu}$

HOW DOES THIS JIVE WITH 3+1 CONSTRAINT PRESERVATION, WELL POSEDNESS AND GAUGE CONDITIONS?

3+1 CODES ONLY EVOLVE 6 COMPONENTS OF EINSTEIN'S EQUATIONS

CONSTRAINT PRESERVATION

CONSTRAINTS
$$H=G_{\mu\nu}n^{\mu}n^{
u}$$
 $P^i=h^{i
u}n^{\gamma}G_{
u\gamma}$ $x^{\mu}=(t,x^i)$

$$P^i = h^{i
u} n^\gamma G_{
u\gamma} \quad x^\mu = (t,x^i)$$

ADM EVOLUTION SYSTEM $h_{i}^{\rho}h_{\sigma}^{\sigma}R_{\rho\sigma}=0$

$$h^{\rho}_{\mu}h^{\sigma}_{\nu}R_{\rho\sigma}=0$$

Bianchi identity $\nabla_{\nu}G^{\nu}_{\mu}=0$ gives symmetric hyperbolic constraint propagation system

$$n^{\mu}\partial_{\mu}H-\partial_{j}P^{j}=AH+A_{i}P^{i}$$
 $n^{\mu}\partial_{\mu}P^{i}-h^{ij}\partial_{j}H=B^{i}H+B_{i}^{i}P^{j}$



Only one boundary condition allowed if $\beta_N \leq 0$, i.e boundary moves inward relative to Cauchy hypersurfaces

All constraints preserved if $H + P^i N_i = 0$ at boundary Via evolution system, this is equivalent to outgoing Raychaudhuri equation

$$G_{\mu\nu}K^{\mu}K^{\nu} = K^{\mu}\partial_{\mu}\theta + \frac{1}{2}\theta^{2} + \sigma\bar{\sigma} = 0$$
 $\theta = Q^{\mu}\bar{Q}^{\nu}\nabla_{\mu}K_{\nu}$

So constraint preservation enforced by Sommerfeld condition for θ , which supplies boundary values for the missing $Q^{\mu}\bar{Q}^{\nu}k_{\mu\nu}$ component of extrinsic curvature

The constraint system is exactly what you would like

BUT ADM IS CATASTROPHICALLY UNSTABLE

BAUMGARTE-SHAPIRO-SHIBATA-NAKAMURA SYSTEM

EVOLUTION SYSTEM
$$h^{\rho}_{\mu}h^{\sigma}_{\nu}R_{\rho\sigma} - \frac{2}{3}h_{\mu\nu}H = 0$$

Cauchy problem well-posed (Beyer, Sarbach)

PROBLEMS WITH BOUNDARY TREATMENT

SIGN OF β_N DETERMINES ALLOWED NUMBER OF BOUNDARY CONDITIONS

FORCES DIRICHLET CONDITION ON β_N , e.g. $\beta_N = 0$

BIANCHI IDENTITY GIVES CONSTRAINT SYSTEM

$$n^{\gamma}\partial_{\gamma}H - \partial_{j}P^{j} = AH + A_{i}P^{i}$$

 $n^{\gamma}\partial_{\gamma}P^{i} + \frac{1}{3}h^{ij}\partial_{j}H = B^{i}H + B_{j}^{i}P^{j}$

NOT SYMMETRIC HYPERBOLIC!

REMEDY (Nunez, Sarbach): FURTHER MODIFY
EVOLUTION SYSTEM BY MIXING IN AUXILIARY
CONSTRAINTS Z, WHICH LEADS TO A LARGER
SYMMETRIC HYPERBOLIC CONSTRAINT SYSTEM

CONSTRAINT SYSTEM THEN IMPLIES INGOING RAYCHAUDHURI EQUATION

$$G_{\mu\nu}L^{\mu}L^{\nu} = \mathcal{Z}$$

BIZARRE! BUT NEVERTHELESS IT SUPPLIES BOUNDARY VALUE FOR MISSING $Q^{\mu}\bar{Q}^{\nu}k_{\mu\nu}$ COMPONENT OF EXTRINSIC CURVATURE

THERE MUST BE A BETTER WAY TO DO 3+1