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Introduction

An extreme mass ratio inspiral (EMRI) system is a binary
BH system with an extreme mass ratio µ := M1/M2 ≪ 1.
A typical EMRI (∼ 10 : 106M⊙) accumulates ∼ 106 radians of
GW phase in the last year before merger, so phase-coherent
modelling and matched filtering of the GW waveform allows
very precise strong-field GR tests. To do this, and indeed
even to detect weak EMRI signals in the presence of stronger
signals, we need to model the GW phase to high accuracy,
preferably . 1/ρ radians over the entire inspiral, where ρ is
the signal/noise ratio of the EMRI signal after matched filtering.
That is, we need to model the instantaneous orbital frequency
to . 1/ρ parts per million (ppm) accuracy.

While EMRI GWs are much weaker than those from
a comparable-mass supermassive BH inspiral, EMRI in-
spirals last for much longer: the rate of orbital evo-
lution scales with the mass ratio µ∼ 10−5, so the sys-
tem makes O(µ−1)∼ 105 orbits in the strong-field region.
LISA (if funded) should see many such systems at redshifts
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Figure 1: Approximate EMRI
waveforms (figure adapted from
S. Drasco, CQG 23, S769).

out to z ∼ 1, with nearby sys-
tems having ρ& 100. The orbit
will typically remain quite eccentric
through merger. EMRI GW wave-
forms are very complicated, with
multiple quasi-periodicities encod-
ing various parts of the orbital dy-
namics (figure 1).

Because of the very long time span and very high accuracy
requirements, it’s not practical to compute EMRI GWs by direct
numerical integration of the Einstein equations. Instead, BH
perturbation theory is used, modelling the EMRI system as
the large BH’s “background” (Schwarzschild/Kerr) spacetime
together with an O(µ) perturbation due to the small BH. For
general surveys of this research program, see [5, 9].

As a step towards highly accurate EMRI GW templates,
here we consider the problem of calculating the radiation-
reaction “self-force” on the small body (“particle”) to very high
accuracy, for the model system of a scalar-field particle in an ar-
bitrary bound geodesic orbit in Schwarzschild or Kerr spacetime.
We discuss two methods for this: the Barack-Ori “mode-sum
regularization” method (work by JT) and the Barack-Golbourn-
Vega-Detweiler “effective source” method (work by JT & BW).

For both methods, it’s convenient to model the small BH as
a point particle. The scalar field Φ due to the particle satisfies

�Φ = −4πq

∫ +∞

−∞

δ
(

xa − xaparticle(τ
′)
)

√−g
dτ ′ (1)

where q is the particle’s scalar charge, and the integration is
over the particle’s entire worldline. Unfortunately, for a point
particle Φ is formally infinite at the particle, so we can’t numer-
ically solve (1) or compute the self-force F a = q(∇aΦ)

∣

∣

particle
.

Mode-Sum Regularization

The Barack-Ori mode-sum regularization [2] is derived from
a formal Green-function solution to (1), followed by a spherical-
harmonic decomposition of the scalar field,

Φ(t, r , θ,φ) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

Yℓm(θ,φ)ϕℓm(t, r) (2)

For motion in Schwarzschild spacetime, each individual
spherical-harmonic mode then satisfies a linear complex wave
equation in 1+1D on the Schwarzschild background,

�ϕℓm + Vℓ(r)ϕℓm = Sℓm(t)δ
(

r − rparticle(t)
)

(3)

where the potential Vℓ(r) and source amplitude Sℓm(t) are
known analytically. For Kerr spacetime a similar result holds,
although the different ℓm modes are coupled [3].

Numerically Computing the Fields ϕℓm
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Figure 2: 4th order convergence
of the characteristic AMR algo-
rithm with grid resolution.

I (JT) numerically solve (3) for
each ℓm using double-null (charac-
teristic) coordinates/grids, using a
variant of the usual Berger-Oliger
AMR algorithm adapted for char-
acteristic grids [8]. (This AMR
code is freely available to other
researchers; see the arXiv paper.) I
obtain excellent 4th order conver-
gence, even near the particle where
ϕℓm is non-differentiable (figure 2).

Boundary Conditions and Problem Domain

The true (physical) boundary conditions for (3) are only
specified at J ±. I numerically solve (3) on a finite double-null
“diamond” domain using arbitrary (null) initial data (figure 3).
The initial data generates a burst of spurious radiation, but
this propagates away and ϕℓm eventually settles down to an
equilibrium state, allowing the self-force to be calculated at the
“top” of the numerical domain (figure 3). My numerical results
show no evidence of persistent Jost junk solutions [6].
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Figure 3: Double-null “di-
amond” problem domain for
characteristic evolution.

The time required to reach this equi-
librium state (to within some speci-
fied numerical error tolerance) – and
thus the required size of the double-
null numerical problem domain – varies
strongly with ℓ. For very high accuracy
I have used problem domains up to
(100 000M)2 for ℓ=0, decreasing to
(400M)2 for ℓ≥ 5.

Computing the Self-Force

The self-force on the particle is given by

F a =

∞
∑

ℓ=0

(

F a
ℓ± −

[

±Aa(ℓ+1
2) + Ba + C a(ℓ+1

2)
−1
]

)

(4)

where Aa, Ba, and C a are analytically calculable, and F a
ℓ± can

be computed from
∑

m∇ϕℓm at the particle, taking 1-sided
derivatives of ϕℓm (which is non-differentiable there) from either
outside (+) or inside (−) the particle position. (4) is an infinite
sum; in practice I only compute ϕℓm up to ℓ∼ 30. I then
least-squares fit a large-ℓ asymptotic series to the numerically-
computed F a

ℓ±, and use the fit coefficients to estimate the
remainder of the infinite sum (4).
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Figure 4: Scatterplot of F a

ℓ± ac-
tual (“record-playback”) versus es-
timated (“internal”) errors.

The numerical solution of (3)
is quite delicate, and there
are also serious cancellations in
the sum (4). Double-precision
floating-point rounding errors in
solving (3) thus affect F a

ℓ± at the
∼ 0.1 ppm level (figure 4), Using
long-double (80-bit) floating-point
arithmetic to solve (3), I [7] have
obtained the self-force F a to within
. 1 ppm, as measured both by my internal error estimates and
by comparison to highly-accurate frequency-domain results [4].

The Effective-Source Approach

Another way of computing the self-force is the effective-
source method [1, 10]. Here we define a “puncture function”
Φpunct which approximates Φ near the particle, so that the
“residual field” Φres := Φ− Φpunct satisfies

�Φres = S
(3)
eff (5)

where the “effective source” Seff is given by

S
(3)
eff = −�Φpunct − 4πq

∫ ∞

−∞

δ
(

xa − xaparticle(τ
′)
)

√−g
dτ ′ (6)

If Φpunct is a sufficiently good approximation to Φ near the

particle, then Φres and S
(3)
eff are finite at the particle, (5) can be

solved numerically, and F a = q(∇aΦres)
∣

∣

particle
.

The m-mode Decomposition

Rather than solving (5) numerically in 3+1D, we (JT & BW)
Fourier-decompose in the azimuthal (φ) direction,

Φ(t, r , θ,φ) =

∞
∑

m=−∞
e imφ̃ϕm(t, r∗, θ) (7a)

S
(3)
eff =

∞
∑

m=−∞
e imφ̃S

(2)
eff,m(t, r∗, θ) (7b)

where (t, r , θ,φ) are the usual Boyer-Lindquist coordinates in
Kerr spacetime, r∗(r) is a “tortise” radial coordinate, and
φ̃ := φ+ f (r) is an “untwisted” azimuthal coordinate chosen
so as to be regular at the horizon. The individual Fourier modes
ϕres,m now satisfy

�mϕres,m = S
(2)
eff,m (8)

where the “2-D puncture function” ϕpunct,m and “2-D effective

source” S
(2)
eff,m are given by

ϕpunct,m =
1

2π

∫ π

−π

Φpunct(t, r , θ,φ)e
−imφ̃ d φ̃ (9a)

S
(2)
eff,m =

1

2π

∫ π

−π

S
(3)
eff (t, r , θ,φ)e

−imφ̃ d φ̃ (9b)

The Worldtube

Φpunct and S
(3)
eff can be computed near the particle using

covariant Green-function expansions [12, 11]. Far from the

particle these series diverge, so Φpunct and S
(3)
eff aren’t defined.

We thus define a worldtube surrounding the particle worldline
in (r , θ) space, and replace (8) with

�mϕnum,m =

{

S
(2)
eff,m inside the worldtube

0 outside the worldtube
(10a)

where the “numerical field” ϕnum,m satisfies the jump condition

(ϕnum,m)inside = (ϕnum,m)outside − ϕpunct,m (10b)

on the worldtube boundary. S
(2)
eff,m is needed only inside

the worldtube, and ϕpunct,m is needed only “near” (within a
molecule-radius of) the worldtube boundary.

Computing the Puncture Function and Effective Source

A variety of different definitions are possible for Φpunct and

S
(3)
eff , with corresponding tradeoffs between the difficulty of com-

puting them and the accuracy with which Φpunct approximates
the actual (singular) Φ near the particle. Here we use a “4th
order” puncture, where |Φpunct−Φ| = O(|λ|3) near the particle,
where λ is (roughly) the geodesic distance from the particle.
Such a Φpunct can be calculated as

Φpunct(δr , δθ, δφ) =

∑

ijk Nijk(δr)
i(δθ)j(δφ)(k)

∑

ijk Dijk(δr)i(δθ)j(δφ)(k)
(11)

where there are 18 ijk terms in each sum, (δr , δθ, δφ) is
the coordinate position relative to the particle, (δφ)(k) is a
periodic function which approximates (δφ)k near the particle,
and the coefficients Nijk and Dijk are obtained via covariant
Green-function expansions as lengthly but analytically-known
functions of the particle position and velocity.

The Fourier integrals (9) can’t be done analytically, so
they must be computed numerically at (in general) each time
step, for each (δr , δθ) grid point in the worldtube. To ef-
ficiently evaluate these integrals, at each time step we first
compute the coefficients Nijk and Dijk, then compute the net
coefficients of (δφ)(k) in (11) at each (δr , δθ) grid point in
or near the worldtube, then finally evaluate the integrals at
each such grid point using a numerical quadrature routine
(gsl_integration_qawo from the GSL) specifically designed
for computing oscillatory integrals of the form

∫

f (x)e ikx dx .

Numerically Computing the Fields ϕnum,m

We are currently constructing a numerical code to compute
the fields ϕnum,m using a 2+1D AMR Cauchy evolution in
(r∗, θ) space. The same boundary-conditions issue arises as
with the mode-sum scheme; we use a Cauchy problem domain
large enough that reflections from the timelike inner/outer
boundaries don’t reach the worldtube within the numerical
evolution time.

Conclusions

Both the mode-sum and effective-source schemes allow ac-
curate self-force computations. The effective-source scheme
appears to avoid many of the cancellations in the mode-sum
scheme and so should have a higher ratio of accuracy-of-self-
force to accuracy-of-PDE-solution.

By allowing the numerical accuracy and problem-domain size
to vary with m, the m-mode decomposition variant of the
effective-source scheme should be more efficient and accurate
than directly solving for Φres in 3+1D. We hope to reach the
. 1 ppm accuracy level within the next year.
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