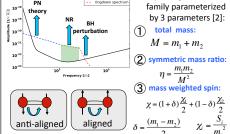
Observing the Orbital Hang-up Effect in a Binary Black Hole Merger Through a Gravitational Wave Burst Search

Satya Mohapatra (satya@physics.umass.edu) and Laura Cadonati University of Massachusetts, Amherst

Orbital hang-up


LIGO DCC: G1100459

higher aligned binary longer time to merge black hole spins

When both the black hole spins are aligned with the orbital angular momentum; it increases the binary's total angular momentum. If this total angular momentum exceeds the maximal angular momentum of a Kerr black hole then the binary cannot merge until a sufficient amount of angular momentum has been radiated away [1].

Phenomenological waveform

waveform constructed by patching Post Newtonian (PN), Numerical Relativity (NR) and perturbation theory

Burst search

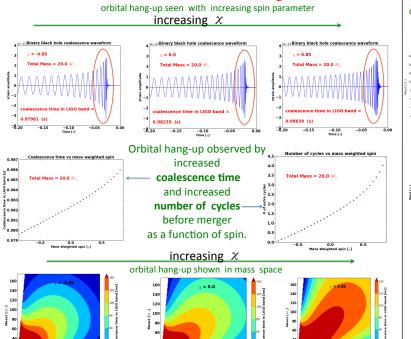
excess signal energy in the data to look for gravitational wave bursts

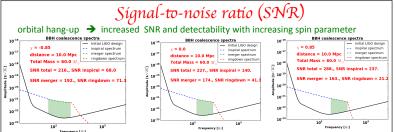
•The Omega burst search [3]: a multi-resolution time-frequency search for statistically significant excess signal energy \rightarrow templated matched filter search for sine-Gaussians in whitened data. •Sine-Gaussians are characterized

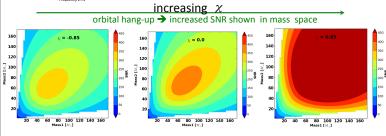

10-1

by peak time (t_o), peak frequency (f₀) and Q (ratio of peak frequency 20 40 60 80 100 120 140 160 Mass1 [M.]

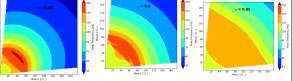
non-precessing

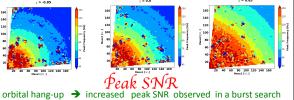

spinning waveform

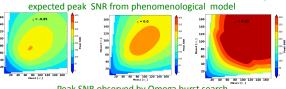

to bandwidth). Sine-Gaussian: $\Psi(t)=Ae^{-(2\pi f_0)^2(t-t_0)^2/Q^2}e^{i2\pi f_0(t-t_0)}$

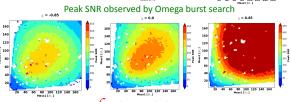

without the clustering of triggers.

Coalescence time in initial LIGO band

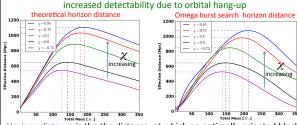



20 40 60 80 100 120 140 160





peak frequency observed by Omega burst search: black hole merger signal added to simulated initial LIGO noise



Horizon Distance

increased detectability due to orbital hang-up

Horizon distance is the the distance at which an optimally oriented black hole binary can be observed with an SNR = 8.

[1] Campanelli et al. Spinning-black-hole binaries: The orbital bang up. PRD 74. 041501 [3] https://trac.ligo.caltech.edu/omega/