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Introduction

It is well known in numerical relativity that current practice for setting initial
data introduces spurious radiation into the system, in both the 3+1 and the
characteristic approaches. This leads to an initial burst of “junk” radiation.
Common practice regards the signal as physical only after it has settled
down following this burst. While it is straightforward to handle the junk
burst in this way, a more serious issue is whether initial data errors lead to
longer-term transients in the wave signal. In this work we show that the
initial data commonly used for both 3+1 and characteristic evolutions,
leads to transients in the wave signal that last for several hundred M
after the burst of junk radiation has passed.

Characteristic extraction is a method of invariantly measuring gravitational
wave emission by transporting the data to null infinity (J+). We first per-



form a 3+1 evolution, saving data on a worldtube at, say, 100M . Subse-
quently, this data is used as innner boundary data for a characteristic evo-
lution. Initial data is needed on a null cone in the far field region. Previous
work has mainly taken the simplistic and unphysical approach of setting
the null shear J = 0 everywhere.

Since characteristic initial data is needed only in the far field region, lin-
earized theory provides a suitable approximation. Thus the key idea is to
use the worldtube boundary data to construct initial data that, at the lin-
earized approximation, represents the physical situation of purely outgoing
radiation. We are then able to compare the waveforms computed by char-
acteristic extraction using as initial data (a) J = 0, and (b) the linearized
solution. We find that while the choice of initial J has only a small effect, a
residual difference is visible, and takes several hundred M to be damped
below other effects.



Any mis-match between the linearized solution and the actual data is an
indication of an ingoing radiation content. Now, on the worldtube Γ, the
characteristic metric data is determined entirely by the 3+1 data so that
any mis-match can be traced back to the 3+1 initial data. In this way we
show that the 3+1 initial data also contains a long-lasting transient.

The Bondi-Sachs metric

We start with coordinates based upon a family of outgoing null hypersur-
faces. Let u label these hypersurfaces, xA (A = 2,3) label the null rays,
and r be a surface area coordinate. In the resulting xα = (u, r, xA) coor-
dinates, the metric takes the Bondi-Sachs form

ds2 = −
(
e2β(1 +Wcr)− r2hABU

AUB
)
du2

−2e2βdudr − 2r2hABU
BdudxA + r2hABdx

AdxB, (1)



where hABhBC = δAC and det(hAB) = det(qAB), with qAB a unit 2-
sphere metric. We represent qAB by means of a complex dyad, and then,
hAB and UA can be represented by complex numbers J and U respec-
tively, with the spherically symmetric case characterized by J = U = 0.

Solutions to the linearized Einstein equations

It will be necessary to decompose the angular part of the metric quantities
into basis functions, and for this purpose we use spin-weighted spheri-
cal harmonics sY`m. The standard spherical harmonics correspond to the
case s = 0, and in this case the s will be omitted i.e. Y`m = 0Y`m.
Quantities with s = 0,1, and 2 are scalars, vectors, and 2-tensors on the
2-sphere.

Using the ansatz

F (u, r, xA) = <(f`,m(r) exp(iνu)) sY`,m (2)



for a metric coefficient F with spin-weight s, we consider the lowest order
case ` = 2, and describe that part of the solution that represents purely
outgoing gavitational radiation.

β2,ν(r) = b1 (constant) (3)

j2,ν(r) = (12b1 + 6iνc1 + iν3c2)
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The solution is determined by setting the constant (real valued) parameters
b1, c1 and c2. The gravitational news corresponding to this solution is given
by

N = <(n2,ν exp(iνu)) 2Y2,m with n2,ν = −iν3c2
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6
(7)

Constructing the metric from data on a worldtube

The Cauchy evolution provides the characteristic metric variables on the
worldtube, decomposed into spherical harmonics sY`,m. We find coeffi-
cients of the linearized solutions that provide a fit to the numerical data at
the worldtube. Then we use the linearized solutions with these coefficients
to predict J everywhere at some chosen time u, and in this way provide



initial data for a numerical characteristic evolution. We restrict attention to
the dominant 2,2 mode. The method uses a Fourier decomposition in the
time domain, but since the details are technically complicated, they are not
given here but can be found in the paper.

For each value of ν the linearized equations evaluated at the worldtube
are four equations for the three unknowns b1,ν, c1,ν, c2,ν. Such an over-
determined system can be tackled by ignoring one of the equations. We
found a better fit to the actual data at J+ when the equation for Wc was
ignored, so that a comparison between the actual and reconstructed data
for Wc at the worldtube provides an indication of the error.

Numerical results

We use the well-studied model of an 8-orbit binary system with equal mass
non-spinning black holes. For the Cauchy evolution, we use the Llama



multipatch code. We output metric data on a worldtube located at RΓ =

100M . The Table below summarizes the various characteristic evolutions
that we have performed, all of which are based on the same Cauchy data,
but with different characteristic initial data, J , and starting points in Bondi
time, u0.

Worldtube location Initial time Initial data
Data set RΓ[M ] u0[M ] J

J0-R100-u0 100 0 J = 0
J0-R100-u450 100 450 J = 0
Jlin-R100-u450 100 450 J = Jlin
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In Model J0-R100-u0, the characteristic evolution is started using the first
available Cauchy data, at coordinate time t0 = u0 = 0, and initialized
by the shear-free solution J = 0. The characteristic evolution includes
the spurious junk radiation. We plot the (`,m) = (2,2) modes of Jnum

computed by J0-R100-u0, and compare them to those of the linearized
solution Jlin computed using linearly reconstructed worldtube data. The
upper panel plots the real and imaginary parts of J , evaluated at J+.
The center panel plots the amplitudes of J , while the bottom panel shows
the relative difference between the linearly estimated Jlin and Jnum. The
linearized Jlin and numerically evolved Jnum differ initially, but from about
u = 450M differ by less that 1%. The difference between Jlin and Jnum

is caused by spurious radiation in either the characteristic, or the 3+1, initial
data, or both.
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A similar effect is seen in the characteristic variableWc, plotted overleaf. In
this case there is clarity about the source of the incoming radiation: it must
be in the Cauchy data. This is because in characteristic extraction, the
characteristic metric at the worldtube is determined entirely by the Cauchy
data. Again, the lower panel shows an approximately exponential decay in
the differences, until around u = 400M .

The findings above indicate that a physically expected purely outgoing in-
spiral radiation pattern is present after some time u0 > uincoming, and
it is only after this time that it is possible to use the linearized solutions
to construct physically consistent initial data. The above results suggest
uincoming ≈ 450M .
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We compare waveforms at J+ from two characteristic evolutions based
on the same Cauchy boundary data, but different initial data: Jlin-R100-
u450 and J0-R100-u450. Both evolutions use boundary data from RΓ =

100M and begin at u0 = t2 = 450M . The model Jlin-R100-u450 uses
initial data determined by the linearized solution, whereas J0-R100-u450
sets J = 0. The plots are overleaf, with the evolutions denoted by N450

lin
and N450

0 . Whereas the phase shows very little difference between the
runs (middle panel), the amplitude shows visible oscillations for the N450

0
evolution (upper panel and inset). The waveforms agree to within 1% only
after a time u = 400M (which must be added to the u0 = 450M starting
point of the simulation).
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We also compare the waveforms of model Jlin-R100-u450 against those of
model J0-R100-u0 (which uses J = 0 at u0 = 0) labeled by N0

0 . We still
observe an oscillation in the amplitude in N0 (but it is drastically reduced
compared to theN450

0 of model J0-R100-u450 shown above). The relative
errors in amplitude, are well below 1% over the entire evolution, and the
total dephasing is smaller than ∆φ = 0.04rad.

The numerical tests described so far were with the extraction radius RΓ =

100M . All these runs were repeated with the extraction radius re-set to
RΓ = 250M . The results are qualitatively similar to the RΓ = 100M

case.
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Discussion and Conclusion

The linearized gravitational wave solution is compatible with outgoing radi-
ation. As such, it provides a more physically motivated starting point than
the shear-free, J = 0, alternative. Importantly, we find that the evolutions
which take place from either J = Jlin initialized at a time u0 = 450M , and
J = 0 at the initial time u0 = t0 = 0, are very similar. That is, for simple
choices of initial J , the physical conclusions are not altered dramatically.

On the other hand, we have demonstrated that the choice of characteristic
initial data does result in a small but measurable difference, which decays
at a slow exponential rate over a time period of several hundred M . Since
the linearized initial data contains only an outgoing mode, we conclude that
the shear-free characteristic initial data contains incoming radiation. While



this is expected, it is interesting that it takes so much time for the effect to
decay away.

Since the characteristic data on the worldtube is determined entirely by the
3+1 data, the extent to which this data does not fit the linearized solution is
a measure of its incoming radiation content. By construction, the quantities
β, U and J in the linearized solution must fit the data, with the difference in
Wc being an indication of incoming radiation in the 3+1 evolution. SinceWc

is not a gauge invariant quantity, it is not possible to make a quantitative
statement about the magnitude of the incoming radiation, but our work
indicates that it takes until at least ±400M until the effect of incoming
radiation is saturated by other effects.


