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The Pole Condition and Pole Problem

Problem: Find a function basis on B3 (the filled sphere) in
spherical coordinates satisfying the pole condition in the radial
direction (flm(r)→ rl as r → 0) without severely restricting the
CFL stability limit.

Solution: Follow example of spherical harmonics; expand Ym
l

coefficients on r ∈ (0, 1] in a polynomial basis unique to each l.

One-Sided Jacobi Polynomials

The polynomials Ql
n(r) ≡ rlP(0, l+1

2)
n
2−

l
2

(2r2 − 1) are orthogonal w.r.t.
the weight w = r2, manifestly satisfy the pole condition,
maintain the parity of l, and are solutions to a singular
Sturm-Liouville problem – an ideal radial basis for B3.
Furthermore, their low resolution near the origin avoids the
“pole problem” of restricted timesteps. We denote their
normalized forms as Φl

n, some of which are plotted below:
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Odd Modes (l=1)
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Just as l ≥ |m| for spherical harmonics Ym
l , here n ≥ l for Φl

n. In
both cases, this is just another statement of the pole condition.

The cylindrical variants (w = r), proposed by Matsushima &
Marcus and Verkley, are discussed thoroughly in the literature.
Here we develop the spherical case, filling in the details
needed for pseudospectral work.
(P(α,β)

k (x) is the Jacobi polynomial, whose integration weight is “one sided” for α = 0)

Spectral and Physical Resolution

Using Gauss-Radau quadrature to place collocation points on
the outer boundary while avoiding the origin, the highest
modes we can resolve are:

mmax = bNφ/2c + 1 , lmax = Nθ − 1 , nmax = 2Nr − 2

Combined with the pole condition, this places the following
constraints on physical resolution:

Nθ ≥ bNφ/2c + 2 , 2Nr ≥ Nθ + 1

Other resolutions result in a valid method, but imply higher
spectral resolution than will be achieved. One must be very
careful to satisfy constraints both from quadrature and
from the pole condition.

As is the case with spherical harmonics, there are more
collocation points than spectral coefficients (roughly 4 times as
many). Transforming to spectral space is therefore a projection
and is not invertible for functions that are not band-limited.

Spectral Decomposition

This basis is not used to represent the radial dependence of
collocation values. Rather, it is used to expand the radial dependence
of Ym

l coefficients:

f (r, θ, φ) ∼
mmax∑

m=−mmax

lmax∑
l=|m|

(
nmax∑
n=l

fnlmΦl
n(r)

)
Ym

l (θ, φ)

If flm(ri) are the spherical harmonic coefficients for the function
evaluated at radius ri, then the final spectral coefficients are

fnlm =

Nr−1∑
i=0

flm(ri)Φ
l
n(ri)wr

i ,

which are easily computed with a matrix multiplication transform.

Interpolation & Differentiation

Interpolation and differentiation are most easily performed in the
hybrid space of flm(ri). However, as the the order of our polynomials is
greater than the number of radial collocation points, we must apply a
few tricks to take advantage of the functions’ known parity.

Define xi ≡ r2
i . Then the following functions are of sufficiently low

order for interpolation:

glm(xi) = flm(ri) l even
glm(xi) = flm(ri)/ri l odd

To get first and second derivatives, evaluate g′ and g′′ using
Fornberg’s differentiation matrices. Then:

f ′lm(ri) = 2rg′lm(xi) f ′′lm(ri) = 2[g′lm(xi) + 2r2g′′lm(xi)] l even
f ′lm(ri) = glm(xi) + 2r2g′lm(xi) f ′′lm(ri) = 2r[3g′lm(xi) + 2r2g′′lm(xi)] l odd

Note that partial derivatives in r (or θ) are not representable in the
basis. Instead, one must handle either r∂r or Cartesian derivatives.

Integration

Due to our choice of weight function, integration can be efficiently
performed as a weighted sum of collocation values. No transform into
spectral space is required.∫ 1

0

∫ π

0

∫ 2π

0
f (r, θ, φ)r2 sin(θ)dφdθdr =

2π
Nφ

Nr−1∑
i=0

wr
i

Nθ−1∑
j=0

wθ
j

Nφ−1∑
k=0

f (ri, θj, φk)

(wθ
j are the weights associated with the spherical harmonic transform)

Power Monitoring and Filtering

As with spherical harmonics, mode mixing in angular differentiation
requires that one filter out the highest l modes after each timestep.
This procedure does not interact with the radial basis.

We have not found radial filtering to be necessary for stability, but if
required, the notation used here allows consistent filtering on the
index n. This index can also label the power in each mode, keeping in
mind that any given radial expansion consists of either all even or all
odd n. A more holistic approach is to filter and monitor on bn/2c.

Spherical Scalar Wave
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Evolving a spherical scalar wave
with a Gaussian profile is both
stable and exponentially
convergent. Computational cost
per timestep is less than that of
I1 × S2 in our implementation.
Filtering is applied to the evolved
fields after each full timestep,
reducing the required number of
spectral transforms.

Neutron Stars

While we still use finite difference methods to evolve neutron
star matter, we can now solve for the metric quantities inside
the star using these B3 basis functions. We previously used
Chebyshev polynomials on (I1)3 in the center of the star to
avoid the coordinate singularity. Now, neutron stars can now be
decomposed into fewer, larger, all-conforming subdomains,
eliminating the need to interpolate boundary information and
reducing the total number of gridpoints.

Evolving a TOV star shows considerable performance gains.
These domains have since been used by Matt Duez and
Francois Foucart in simulating black hole – neutron star
inspirals.

Conclusions

Advantages
I Elegant and efficient

treatment of spherical
domains

I Avoids pole problem

Disadvantages
I Interpolation onto hydro grid

is expensive
I Implementation requires

careful attention to details
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