

Main Ideas

• Simulate physics on a deforming domain by a variational/ALE front-tracking method.

- Use a level set formulation **only** when a new mesh must be generated.
- The *geometry* of the domain is encoded implicitly by the distance function to the manifold Γ . • The *topology* of the domain is captured by the shape skeleton, which derives directly from the
- signed distance function. • Generate mesh by adaptive refinement guided by the distance function and shape skeleton.

Mesh Generation With Large Deformations and Topological Changes Shawn W. Walker RICARDO H. NOCHETTO LSU, Department of Mathematics and CCT UMD, Department of Mathematics and IPST

- $O(N_V^{1+1/d})$ operations. Possibility of parallelizing.
- jumps in $\nabla \phi$; $O(N_V + N_E + N_T)$ operations.
- \Rightarrow Let Γ_{Sk} be the approximate shape skeleton.

- grid resolves shape topology, e.g. fingering.

Candidate Manifold Selection

Results

- EWOD driven droplet splitting; only the interior mesh is shown.

Extension To 3D Selecting The Candidate Manifold

- that no tetrahedra will get crushed during the mesh conforming phase.
- swapping to give a well-formed polyhedral surface.

• The droplet pinches in two places (symmetrically) resulting in an elongated satellite droplet.

Literatur

[1] S. Alben and M. J. Shelley. Coherent locomotion as an attracting state for a free flapping body. In Proceedings of the National Academy of Sciences USA 102, pages 11163–11166, 2005. [2] A. W. Bargteil, T. G. Goktekin, J. F. O'Brien, and J. A. Strain. A semi-lagrangian contouring method for fluid simulation. ACM Transactions on Graphics, 25(1), 2006.

[3] T. Baumgart, S. T. Hess, and W. W. Webb. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. *Nature*, 425:821–824, October 2003. [4] T. D. Blake, A. Clarke, and E. H. Stattersfield. An investigation of electrostatic assist in dynamic wetting. *Langmuir*, 16(6):2928–2935, 2000.

[6] S. K. Cho, H. Moon, J. Fowler, S.-K. Fan, and C.-J. Kim. Splitting a liquid droplet for electrowetting-based microfluidics. In International Mechanical Engineering Congress and Exposition, New York, NY, Nov 2001. ASME Press. ISBN: 0791819434. [7] S. K. Cho, H. Moon, and C.-J. Kim. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 12(1):70–80, 2003.

[8] M. V. Dyke. An Album of Fluid Motion. Parabolic Press, May 1982.

[9] D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex water surfaces. In ACM Trans. Graph. (SIGGRAPH Proc.), pages 736–744, 2002. [10] P. Fast, L. Kondic, M. J. Shelley, and P. Palffy-Muhoray. Pattern formation in non-newtonian hele-shaw flow. *Physics of Fluids*, 13(5):1191–1212, 2001. [11] R. H. Nochetto and S. W. Walker. A hybrid variational front tracking-level set mesh generator for problems exhibiting large deformations and topological changes. Journal of Computational Physics, 229(18):6243–6269, Sept 2010. [12] P.-O. Persson and G. Strang. A simple mesh generator in matlab. SIAM Review, 46(2):329–345, 2004.

[13] A.-K. Tornberg and M. J. Shelley. Simulating the dynamics and interactions of flexible fibers in stokes flows. Journal of Computational Physics, 196:8–40, 2004.

[14] S. W. Walker, A. Bonito, and R. H. Nochetto. Mixed finite element method for electrowetting on dielectric with contact line pinning. *Interfaces and Free Boundaries*, 12(1):85–119, March 2010. [15] S. W. Walker and B. Shapiro. Modeling the fluid dynamics of electrowetting on dielectric (ewod). Journal of Microelectromechanical Systems, 15(4):986–1000, August 2006. [16] S. W. Walker, B. Shapiro, and R. H. Nochetto. Electrowetting with contact line pinning: Computational modeling and comparisons with experiments. *Physics of Fluids*, 21(10):102103, 2009. [17] O.-Y. Zhong-can. Elastic theory of biomembranes. Thin Solid Films, 393:19–23, 2001.

[5] R. Bridson, J. Teran, N. Molino, and R. Fedkiw. Adaptive physics based tetrahedral mesh generation using level sets. *Engineering with Computers*, 21:2–18, 2005.