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We discuss high order absorbing constraint preserving boundary conditions for the conformal decomposition of the Z4 formulation of general relativity coupled to the moving puncture family of gauges.
Using a Kreiss’ theory we prove well-posedness of the initial boundary value problem with a particular choice of the puncture gauge in the frozen coefficient approximation. Numerical evidence for the
efficacy of the first and second order boundary conditions in constraint preservation and absorption is compared with the standard sommerfeld conditions in the evolution of flat, spherical black-hole
and neutron star spacetimes.

1. Introduction

Numerical simulations of general relativity typically introduce an artificial
time-like outer boundary ∂Σ.
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This boundary requires conditions which ought to render the initial boundary
value problem (IBVP) well-posed. Well-posedness is the requirement that the
solution of the IBVP should be unique and depend continuously upon given
initial and boundary data.

What is the challenge?

The boundary should be specified so that

• is compatible with the constraints,

• controls the incoming modes,

• yields a well-posed IBVP.

What is the problem?

• The system is constrained.

•Gauge freedom
•No local expressions for in/outgoing modes,

• The geometry is not known.

Formulations

The two most popular choices of GR in use in numerical relativity today are
the generalized harmonic gauge (GHG) and the BSSN formulations [1, 2, 3, 4].

•GHG: since the system has a very simple wave-equation structure in the
principal part, significant progress has been made in the construction of
both continuum and discrete boundary conditions [5, 6, 7, 8, 9].

• BSSN: Sommerfeld boundary conditions are the most common in use in ap-
plications, despite the fact that it is not known whether or not they result
in a well-posed IBVP. Recently, Núñez and Sarbach have proposed in [11]
CPBCs for this system.

• Z4: this formulation is formally equivalent to GHG when it is coupled to
the generalized harmonic gauge. Additionally, it is possible to recover the
BSSN from Z4 by freezing one of the constraint variables. In this sense Z4
may be thought of as a generalization of both BSSN and GHG. Boundary
conditions for a first order reduction of Z4 have been specified and tested
numerically in [10].

2. The Z4 formulation

The Z4 formulation [12, 13, 14] takes the 4-dimensional Einstein equations
and replaces them by

Rab +∇aZb +∇bZa = 8 π

(

Tab −
1

2
gab T

)

, (1)

where Za is a 4-vector of constraints. Solutions of Eq. (1) are also valid so-
lutions of the Einstein equations when the constraints Za vanish. From the
PDEs point of view, the most important part of the constraint addition is that
of the partial derivatives.
We 3 + 1 decompose the system. This has the undesirable effect of breaking
the 4-covariance of the Z4 formulation. However, the evolution equations can
be written very similarly to BSSN. The time-evolution equations are

∂tγij = Lβγij − 2αKij, (2)

∂tKij = −DiDjα + α
[

Rij − 2KikK
k
j +KijK + 2 ∂(iZj)

]

+ LβKij + 4πα[γij(S − ρADM)− 2Sij] , (3)

∂tΘ = α

[

1

2
H + ∂kZ

k
]

+ βiΘ,i, (4)

∂tZi = αMi + αΘ,i + βj Zi,j . (5)

where Zi is just the spatial projection of Za and Θ = −naZ
a.

• The conformal decomposition of this formulation was recently pre-
sented [15].

Puncture gauge conditions

The most popular gauge choice in the numerical evolution of dynamical space-
times is the puncture gauge. By introducing scalar functions (µL, µS, ǫα, ǫχ)

the general form of the gauge (without introducing the additional field Bi) is

∂tα = βiα,i − µLα2 K̂ , (6)

∂tβ
i = βjβi,j + µS Γ̃i − η βi − ǫα αα,i

+ ǫχ γ̃
ij∂jχ . (7)

Note that in this condition we have included a new term proportional to the
spatial derivative of χ [16].

• The standard choices are µL = 2/α, µS = 3/4 and ǫα = ǫχ = 0.

High order constraint preserving boundary conditions

To specify boundary conditions we define the background outgoing character-
istic vectors and a null vector

l̊a =
1√
2
(̊na + s̊a) , k̊a =

1√
2
(̊na +

√
µS s̊a) , (8)

m̊a =
1√
2
(̊na +

√
µL s̊a) , m̂a =

1√
2
(ω̊a + i v̊a) . (9)

Since the constraints Θ, Zi satisfy wave equations, the constraint preserving
boundary conditions in the linear regime around the background are given by

(

r2 l̊a∂a

)L
Θ =̂ 0 ,

(

r2 l̊a∂a

)L
Zi =̂ 0 . (10)

where L ≥ 0 is an integer and =̂ denotes equality in the boundary T . Note
that this conditions are also absorbing boundary conditions.
We assume that, both the physical and background metrics, are sufficiently
close to flat so that the full system has ten incoming characteristic variables
at the boundary. This determines the number of boundary conditions we may
specify. The boundary conditions (10) give four of the total. We take for the
remaining

(

r2 m̊a∂a

)L+1
α =̂ hα ,

(

r2 k̊a∂a

)L+1
βs =̂ hs , (11)

(

r2 l̊a∂a

)L+1
βA =̂ hA ,

(

r2 l̊a∂a

)L+1
γTF

AB =̂ hTF

AB , (12)

where hα, hi , h
TF

AB are given boundary data. One can extend the above results
to consider the standard puncture gauge. We consider the so-called freezing-
Ψ0 boundary condition in term of the electric and magnetic part of Z4 [17]

Ψ0 =
(

ETT

ij − i BTT

ij

)

m̂i m̂j =̂ qm̂ m̂ . (13)

Numerical Test

The necessity of CPBCs for the Z4 system is not only motivated by the require-
ment of having a mathematical well-posed system, but also by the numerical
evidence of artifacts and/or instabilities related to a bad or naive implemen-
tation of the boundary conditions. An example of this numerical artifact is
show in Fig. 1 where the time evolution of the central rest-mass density of a
equilibrium model of spherical compact star obtained with the Z4c formula-
tion.
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Figure 1: Left: radial oscillations of a compact stars’ central rest mass density in time. The outer boundary is at rout = 20. Incoming constraint
violation from the outer boundary perturbs the star at t = 20. Right: norm of the constraint violation in the same numerical test.

•We perform several tests, in each case with Sommerfeld, first and second
order constraint preserving boundary conditions.

• To examine the stability and the effect of the BCs we consider simulations
with very a close outer boundary (rout ≃ 20M ) and compare the results
with a reference simulation [8], in which the outer boundary is placed far
away (r′out ≃ 1000M ) from the origin.

• To globally monitor the constraint violation we define the quantity:

C ≡
√

H2 +M iMi + Θ2 + ZiZi , (14)

and we will refer as the constraint monitor. We will make often use of
2-norms of quantities:

||C(·, t)||2 ≡
√

∫

dr r2C(r, t)2 . (15)

where in practical computations the integral is performed on the grid by the
trapezium rule. For a fair comparison with the “investigated” solution, the
norm of the reference solution is taken only on the domain, r ∈ (0, rout).
Since most of the presented analytical results have been obtained by using
the new shift condition (ǫχ = 1/2), we numerically investigated this gauge as
well as standard puncture gauge. We found in all the cases comparable results
(see e.g. Fig. 4), so most of the results are presented for the more popular
puncture gauge in order to give numerical evidence of what we cannot prove.

Perturbed flat spacetime. Evolution of constraint violating initial data
on flat space. Here we focus on convergence and constraint absorption. We
find near-perfect constraint transmission of the constraints when using the
second order CPBCs.
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Figure 2: Left: Constraint violation in flat spacetime test. The 2-norm of the constraint monitor is showed in time for different BCs implemented.
The same quantity for the reference simulation is showed. Right: Experimental reflection coefficient in flat spacetime test. The experimental

reflection coefficient, defined in Eq. (??), is plotted versus the wave number for different BCs implemented.

Star spacetime. Evolution of a stable compact star. In the Sommerfeld
case, non convergent reflections from the boundary effect the dynamics of the
star. The absorbing CPBCs completely solve this problem.
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Figure 3: Left: Convergence factor in flat spacetime test. The self-convergence factor is compute from the 2-norms of three simulations at different
resolutions and showed in time for 2nd order CPBCs and Sommerfeld BCs. Right: Constraint violation in black hole spacetime test. Upper panel:
The 2-norm of the constraint monitor is showed in time for different BCs implemented. The same quantity for the reference simulation is showed
(black dotted line). Bottom panel: The 2-distance of the constraint monitor with the reference simulation is showed in time for different BCs

implemented.

Black hole spacetime. Evolution of black hole initial data. The ro-
bustness and performances of CPBCs have been tested against black holes
spacetime with different initial data and gauges.
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Figure 4: Constraint violation in black hole spacetime test, comparison of different initial data and gauges. The 2-norm of the constraint monitor
is showed in time for 2nd order CPBCs. The evolutions refer to puncture initial data showed with puncture shift (red solid line) and asymptotically

harmonic shift (red dashed line) and to Kerr-Schild initial data (evolved with excision) with puncture shift (thick orange solid line) and
asymptotically harmonic shift (thick orange dashed line).

3. Well-posedness

A method to demonstrate well-posedness is based on the frozen coefficient
principle. In this approach one freezes the coefficients of the equations of mo-
tion and the boundary operators. Therefore, the IBVP is simplified to a linear,
constant coefficient problem which is solved using a Laplace-Fourier transfor-
mation. Sufficient conditions for the well-posedness of the frozen coefficient
problem were developed by Kreiss in [18] if the system is strictly hyperbolic.
Using that theory, it can be constructed a smooth symmetrizer with which
well-posedness can be shown using an energy estimate in the frequency do-
main. We use those results to prove the well-posedness of the IBVP for Z4
with high order constraint preserving boundary conditions.
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