

Status of the NINJA-2 Project

Larne Pekowsky for the NINJA-2 Collaboration

Contributing numerical relativity groups

BAM

Bernd Bruegmann¹, Doreen Mueller¹, Mark Hannam², Sascha Husa³

Florida Atlantic University

Pedro Marronetti⁴, Petr Tsatsin⁴, Wolfgang Tichy⁴

University of Illinois at Urbana-<u>Champaign</u>

Zachariah Etienne¹¹, Yuk Tung Liu¹¹, Stuart Shapiro¹¹

<u>Llama</u>

Philipp Moesta³, Frank Ohme³, Denis Pollney⁷, Christian Reisswig⁶, Lucia Santamaria³

Rochester Institute of Technology

Manuela Campanelli⁸, Carlos O. Lousto⁸, Bruno C. Mundim⁸, Hiroyuki Nakano⁸, Marcelo Ponce⁸, Yosef Zlochower⁸

LEAN

Ulrich Sperhake⁶

Georgia Institute of Technology

James Healy⁵, Pablo Laguna⁵, Deirdre Shoemaker⁵, Lionel London⁵, Tanja Bode⁵, Roland Haas⁵

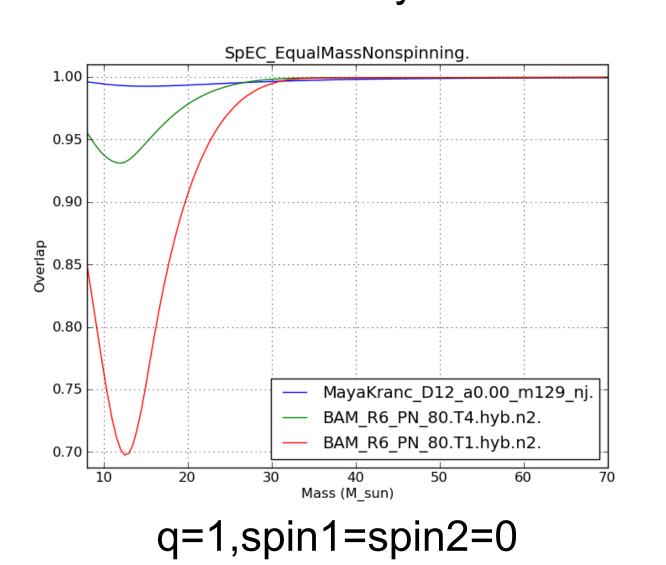
SPeC

Nicholas Taylor⁶, Bela Szilagyi⁶, Mark Scheel⁶, Larry Kidder⁹, Harald Pfeiffer¹⁰, Tony Chu⁶, Mike Boyle⁹

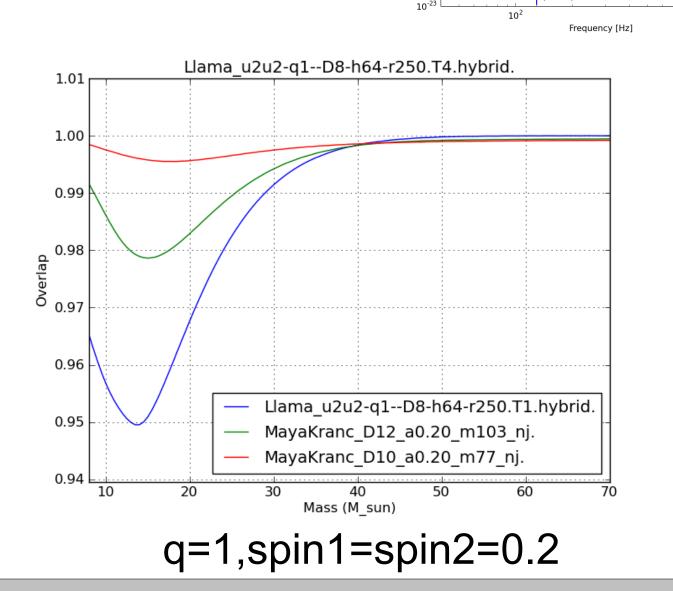
Friedrich-Schiller-Universität Jena, ²Cardiff University, ³Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), ⁴Florida Atlantic University, ⁵Georgia Institute of Technology, ⁶California Institute of Technology, ⁷Universitat de les Illes Balears, ⁸Rochester Institute of Technology, ⁹Cornell University, ¹⁰Canadian Institute for Theoretical Astrophysics, ¹¹University of Illinois at Urbana-Champaign

Detector noise and data analysis: The LSC and Virgo Collaborations

The Numerical INjection Analysis (NINJA) project is a collaboration between numerical relativists and gravitational wave astronomers. The goal is to test search pipelines and parameter estimation against the best available waveforms for binary black hole mergers.

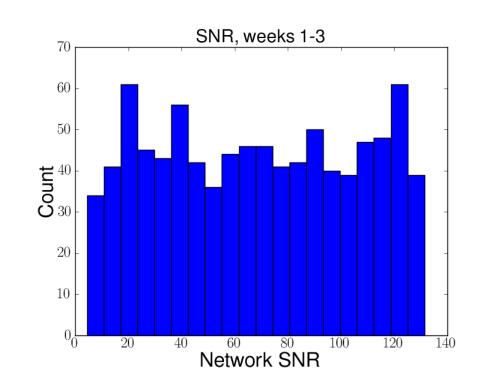

In NINJA 1¹ NR waveforms were injected into simulated Gaussian noise shaped to match the initial LIGO and Virgo noise curves. Data analysis groups then ran detection and parameter estimation codes and compared the results against the injected parameters. NINJA 1 had an open submission policy. NINJA 2 imposes tighter requirements so that we can draw more quantitative conclusions:

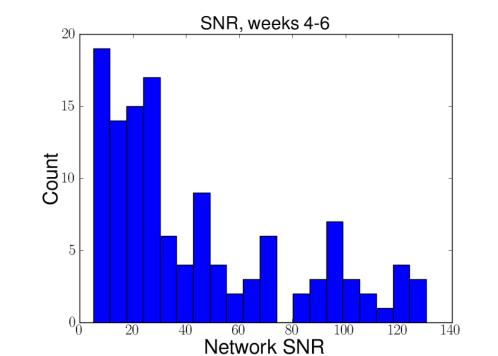
- > 5 orbits of NR
- Hybrid NR/Post-Newtonian waveforms long enough to be injectable down to 8 M_o, turning on at 35 Hz
- Non-spinning, aligned or anti-aligned spins (NINJA3 will address) precession)
- Higher-order modes encouraged!

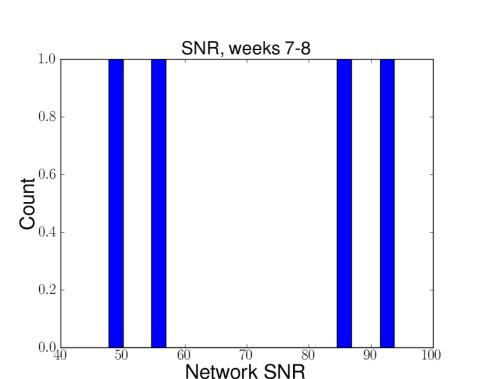

Waveform comparisons

Mass ratio	Spin1	Spin2	<u>Submissions</u>
1	-0.85	-0.85	BAM(2)
1	-0.75	-0.75	BAM(2)
1	-0.50	-0.50	BAM(2)
1	-0.44	-0.44	SpEC
1	-0.40	-0.40	Llama(2)
1	-0.25	-0.25	BAM(2), UIUC
1	-0.20	-0.20	Llama(2)
1	0.00	0.00	SpEC, GATech, BAM(2)
1	0.20	0.20	Llama(2), GATech(2)
1	0.25	0.25	BAM(2)
1	0.40	0.40	Llama(2), GATech(2)
1	0.44	0.44	SpEC
1	0.50	0.50	BAM(2)
1	0.60	0.60	GATech(2)
1	0.80	0.00	GATech
1	0.80	0.80	GATech(2)
1	0.85	0.85	BAM(2), UIUC
1	0.90	0.90	GATech
3	0.40	0.60	BAM
4	0.00		LEAN, BAM(2)
3	0.00	0.00	BAM(2)
2	0.02	0.08	GATech
2	0.00		GATech, BAM(2)
10	0.00	0.00	RIT
10	0.00	0.00	1 XI I

Sets of waveforms with identical parameters have been compared by calculating their overlap using the initial LIGO noise curve. One waveform (title) is selected and the overlap with the others in the same family (Y axis) is calculated as a function of mass (X axis). Initial studies have shown that additional work needs to be done on hybridization.






Initial Data Set

NINJA2 will allow data analysis groups to perform injections on the fly in order to tune and test pipelines. To compare results between search groups we will also produce common data sets. The first of these consists of 2 months of simulated Gaussian noise with 1029 injections, with masses uniformly chosen from 10 to 350 M_o with different densities and SNRs over the course of the run.

Status

The initial data set has been generated and is being distributed to clusters for analysis. A second round of waveform submissions has been opened to refine current waveforms and accept new ones. An agreement between NINJA and the LIGO and Virgo collaborations has been reached which will allow the use of real detector noise in subsequent data sets. Data analysis will begin shortly, with preliminary results to be discussed at the NRDA conference in July.

Benjamin Aylott et al 2009 Class. Quantum Grav. 26 165008 arXiv:0901.4399v2