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Over the past several years, aspects of operations 
research and control theory have been integrated 
into the Spectral Einstein Code (SpEC) as part of 
the dual frames approach to solving the moving 
excision problem.  The two frames are:

       The grid frame

       
       The asymptotically inertial frame  

In the grid frame, fixed excision regions necessitate 
stationary black holes, and the mapping between the 
two frames is governed by a control system.

Today, we control not just the trajectory of the 
black holes, but also the size and shape of their 
apparent horizons.  The mapping tracks the horizons 
as they distort, which is most crucial during the 
initial relaxation and the merger, to ensure that the 
excision boundary conditions remain satisfied.
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Waves entering the computational domain from the 
excision region, which is identified by negative 
characteristic speeds on the excision boundary, was 
a major obstacle in merging near-extremal-spin 
binaries. We can now keep the characteristic speeds 
at a desired positive value by controlling the size of 
the apparent horizon. This technique has allowed 
collaborators in reference [4] to merge binaries with 
spins above the Bowen-York limit.

Control systems are implemented in SpEC through 
the parameters of the mappings between the 
asymptotically inertial and non-inertial frames:

• Scaling, a
• Rotation angles, (θ,ϕ)
• Translation, (Tx,Ty,Tz)
• Apparent horizon Ylm

 coefficients, λlm

• Characteristic speeds, dλ00/dt

We represent a generic map parameter, Λ, as an Nth-
degree Taylor polynomial, where the control signal 
acts as the Nth derivative:

Because binary evolutions are a time-dependent 
problem, the point of expansion must be updated at 
a frequent set of times ti.

To update U we use a standard PID controller or a 
special PD controller:

The Taylor polynomial is then used to predict the 
parameters for the next timestep, enabling the map 
to accurately track the black holes.

Control theory is most robust in linear, time-
invariant systems.  Because binary black hole 
evolutions are non-linear, dynamic systems, we 
need to adjust the control law accordingly.  We 
assume the system to be in quasi-static equilibrium 
on a timescale no less td.  For the PID controller, if 
we choose the following gains:

KI = 1/td
3

Kp = 3/td
2

Kd = 3/td

then the control error will be exponentially damped 
on this timescale:

Q(t) ∝ e-t/td

As the binary black hole system evolves, we 
automatically increase or decrease td in response to 
the error. Typical behavior of td is unsurprising: 

• Large  inspiral, late ringdown→

• Small → initial relaxation, merger
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“We cannot direct the wind, but we can adjust the sails.”  ~Anonymous

Whether it is the result of physical processes or 
numerical effects, rapid variation in the control 
signal is transfered to the map parameters through 
their relation in the Taylor polynomial.

In the example of characteristic speed control, this 
can cause the minimum speed to become negative, 
in which case the boundary conditions on the 
excision surface will be violated.

It is sometimes the case that the choice of controller 
is insufficient to achieve the desired level of 
averaging, and in these cases we implement direct 
averaging of the error, Q, in one of two ways:

• Polynomial fit of order N to the previous M 
measurements of the error, where M > N.

• Exponentially-weighted average with timescale τ 
of all previous control error measurements and their 
derivatives and integrals, F(t) = Q, dnQ/dtn, and ∫Q 
dt, such that they satisfy

dFavg/dt = F(t) – Favg/ τ

The basic function and structure of a control system 
is easily understood as feedback within the 
framework of signal processing.

Within the black box of a simulation there is some 
measure of error, Q(t).  This acts as the input for a 
control system, which then has to find some control 
signal, U(t), that will minimize the error when fed 
back into the simulation.

control
system

simulation
Q(t)U(t)

A simple and effective way to compute U(t) is to 
make it a linear combination of integrals and/or 
derivatives of the error, Q(t):

• Proportional

U(t) = Kp Q(t)

• Proportional-Derivative

U(t) = Kp Q(t) + Kd dQ/dt

• Proportional-Integral-Derivative (PID)

U(t) = Kp Q(t) + KI ∫Q(t)dt + Kd dQ/dt

Controlling the speed of a simple 1D wave is 
analogous to controlling characteristic speeds in 
SpEC.  Assume a wave f  =  f (x – ct) has the 
following map applied to it:

x = xgrid + v(t) t
The wave travels at a velocity vgrid= c – v(t) in this 
frame.  We can choose v(t) to attempt to achieve 
some desired grid velocity, vd.

Define the error, Q = vgrid – vd,, and a feedback 
equation, d2v/dt2 = Kp Q + Kd dQ/dt, then the solution 
has an exponentially damped envelope when
4Kp > Kd

2, which allows vgrid→ vd as t → ∞.

We can specify v(t) such that vgrid is the opposite 
sign of c and the wave is left-going in the new 
frame instead of right-going. This is analogous to 
keeping characteristic speeds positive in SpEC!

Figure: vgrid is plotted for a family of gains Kp. The wave velocity 
is c = -0.2 and the desired velocity is vd = 0.5. The controller 
turns on at t = 2.
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Figure: A nearly merged spin 0.97 evolution is restarted with
characteristic speed control to prevent incoming char. fields.
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