Index Theory

How can we be sure no periodic orbits exist? Consider

\[\dot{x} = F(x) \]

with \(F : \mathbb{R}^2 \to \mathbb{R}^2 \) continuously differentiable.

Take a closed curve \(\Gamma \) with no self-intersections, that does not pass through a fixed point.

1. Start at \(x_0 \), traverse \(\Gamma \) counter-clockwise and take the angle \(\theta \) of \(F(x) \). The angle changes continuously as \(\Gamma \) is traversed.

2. After one pass we again end up at \(x_0 \) with an angle \(\theta' = \theta + 2\pi n \); \(n \in \mathbb{Z} \)

\[I_{\Gamma} = \frac{1}{2\pi} (\theta' - \theta_0) \]
Examples

a.)

$\Gamma_{p} = 1$

b.)

$\Gamma_{p} = 1$

c.)

$\Gamma_{p} = -1$

d.)

Periodic Orbit $\Rightarrow \Gamma_{p} = 1$

e.)

$\begin{cases} \dot{x} = x^2y \\
\dot{y} = x - y^2 \end{cases}$; $\Gamma = \text{unit circle}$

$\Gamma_{p} = 0$
Properties of the Index

1. If \(I \) can be deformed continuously into \(\bar{I} \) without passing through any equilibrium points then
\[
I_p = \bar{I}_p
\]

Proof:
\(I_p \) varies continuously as \(I \) is deformed, but \(I_p \) is integer valued.

2. If \(I \) does not contain any fixed points then \(I_p = 0 \)

Proof:
Property 1 implies we can shrink \(I \) to a point without changing the index.

3. If we replace \(F(x) \) by \(F(-x) \) the index is not changed.

Proof:
Each angle is replaced by \(\pi + \pi \), hence \(\psi_1 - \psi_0 \) is the same.

4. The index of a periodic orbit is one.

5. If \(F(x) \) is deformed continuously without creating any fixed points on \(I \), \(I_p \) stays the same.

Theorem - Assume \(F \) is continuously differentiable. Inside each periodic orbit, there is at least one equilibrium.

Proof:
Follows from items 2 and 4.

Index of isolated fixed point - Let \(\hat{x}^* \) be an isolated fixed point of \(\hat{x} = F(x) \). Define
\[
I(\hat{x}^*) = \text{index of simple closed curve that encloses } \hat{x}^* \text{ and no other fixed points}
\]

\(I(\hat{x}^*) \) is well defined by property 4.
Consequences:
1. If \(x^* \) is an attractor or repeller then \(I(x^*) = 1 \).
2. If \(x^* \) is a saddle point then \(I(x^*) = -1 \).

Proof:
Follows from examples b and c and properties 1, 3, 5.

Theorem - If \(f \) is a closed simple curve that contains in isolated fixed points \(\bar{x}_1, \ldots, \bar{x}_n \) then \(\int f = I(\bar{x}_1) + \ldots + I(\bar{x}_n) \).

Proof:

Contribution cancel in the limit.

Corollary: A periodic orbit must enclose fixed points whose indices sum to +1.

Omnivore example:
The index of all the fixed points is \(-2 \).

Sheep and Rabbits:
The index of all the fixed points is 0.
Conservative Systems:

Inertial Systems of the Form:

\[\dot{x} = F(x) \]

A first integral can be found as follows:

\[\dot{x} \dot{x} = \dot{x} F(x) \]
\[\Rightarrow \frac{1}{2} \frac{d}{dt}(\dot{x}^2) = \frac{dx}{dt} \left(-\frac{dV}{dx} \right), \quad \text{(For any solution curve)} \]

where \[V(x) = -\int_x^x F(x')dx' \quad \text{(x can be chosen) \} \]
\[\Rightarrow \frac{d}{dt} \left(\frac{\dot{x}(t)^2}{2} + V(x(t)) \right) = 0, \quad \text{arbitrarily} \]

For any solution curve, there is a constant \(E \) such that

\[\frac{\dot{x}(t)^2}{2} + V(x(t)) = E \]

We can also write as a system:

\[\dot{x} = \nu \]
\[\dot{\nu} = -\frac{F(x)}{2} \]

Phase portrait \(\leftrightarrow \) contour plot

Theorem - A conservative system cannot have any attractors or repellors.

Proof:
Suppose there exists \((x^*, \nu^*) \) that is an attracting point with a basin of attraction \(\mathcal{A} \). Then, for all \((x_1, \nu_1), (x_2, \nu_2) \in \mathcal{A} \), it follows that \(E(x_1, \nu_1) = E(x_2, \nu_2) \). Since

\[E(x_1, \nu_1) = \lim_{t \to \infty} E(x_1, \nu_1, t) \]

\[= E(x^*, \nu^*(t)) \]

\[= \lim_{t \to \infty} (x_2(t), \nu_2(t)) \]

\[= E(x_2, \nu_2). \]
Therefore, \(E \) must be constant in entire basin of attraction which we preclude by definition.

Example.

\[\dot{x} + \sin(x) = 0 \]
\[V(x) = -\cos(x) \]

\[E = \frac{1}{2} v^2 - \cos(x) \]

\[\Rightarrow v = \pm \sqrt{2E + 2\cos(x)} \]

\[v = \pm \frac{2(\cos(x) - \cos(x_0))}{2(\cos(x) - \cos(x_0)) + \frac{1}{2} v_0^2} \quad (\text{if } v(0) = 0) \]

\[v = \pm \frac{2v_0}{2(\cos(x) - \cos(x_0)) + \frac{1}{2} v_0^2} \quad (\text{if } v(0) \neq 0) \]

In this region, velocity can be nonzero.
Example
\[\dot{x} = x - x^3 \]
\[V(x) = -\frac{x^2}{2} + \frac{x^4}{4} \]
\[E = \frac{1}{2} V^2 - x^2 + \frac{x^4}{2} \]
\[\Rightarrow V = \pm \sqrt{\frac{x^2 - \frac{x^4}{2} - x^2}{x^4}} \quad (\text{If } V(0) = 0). \]
\[\dot{x} = -\nabla V, \quad \text{where } V : \mathbb{R}^{2} \to \mathbb{R} \]

Lemma - Gradient systems cannot have closed orbits.

Let \(x(t) \) be a closed orbit with period \(T \). Then,
\[
\frac{d}{dt} V(x(t)) = \nabla V \cdot \frac{dx}{dt} = -|\nabla V|^2 \leq 0.
\]
and \(V(t) \) decreases strictly unless \(x(t) = x^* \) is an equilibrium point. Therefore, \(V(x(0)) \geq V(x(T)) \) which is a contradiction.

Example

\[
\begin{pmatrix}
\dot{x} \\
\dot{y}
\end{pmatrix} =
\begin{pmatrix}
2x + \sin(y) \\
x \cos(y)
\end{pmatrix}
\]
does not have any periodic orbits.

\[-V_x = 2x + \sin(y) \]
\[-V_y = x \cos(y) \]
\Rightarrow \(-V = x^2 + \sin(y) x + g(y) \)
\Rightarrow \text{Setting } g(y) = 0 \text{ yields the result.}
\[
V = x^2 - \sin(y) x
\]

How can we know beforehand if a system is potentially a gradient system?

\[V_{xy} = V_{yx} \]

\Rightarrow \cos y = \cos(y) \quad (\text{True in our case})
Solitons

Shallow water waves in a narrow canal

\[u_t + uu_x + u_{xx} + u_{xxx} = 0 \]

Let \(z = x - ct \),

\[
\begin{align*}
\frac{\partial}{\partial x} &= \frac{\partial z}{\partial x} \frac{d}{dz} = \frac{d}{dz} \\
\frac{\partial}{\partial t} &= \frac{\partial z}{\partial t} \frac{d}{dz} = -c \frac{d}{dz}
\end{align*}
\]

\[
\Rightarrow (1 - c) \frac{d}{dz} u + \frac{1}{2} \frac{d}{dz} \left(u^2 \right) + u_{zzz} = 0
\]

\[
\Rightarrow (1 - c) u + \frac{1}{2} u^2 + u_{zz} = \mu
\]

\[
\Rightarrow u_{zz} = -(1 - c) u - \frac{1}{2} u^2 + \mu
\]

This is a conservative system with potential:

\[
\mathcal{V}(u) = (1 - c) u^2 + \frac{1}{6} u^3 - \mu u
\]

The fixed points are:

\[
u = \frac{(1 - c) \pm \sqrt{(1 - c)^2 + 2\mu}}{2}
\]

\[
u_z = 0
\]
Generically the potential looks like.

Separatrix/homoclinic orbit.
Lyapunov Functions
\[\dot{x} = F(x) \]

A continuously differentiable function \(L : \mathbb{R}^2 \to \mathbb{R} \) is called a Lyapunov function if \(L(x(t)) \) strictly decreases along each solution of \(\dot{x} = F(x) \) that is not an equilibrium.

Lemma - If \(\dot{x} = F(x) \) admits a Lyapunov function, then it cannot have any periodic orbits.

Example
\[\dot{x} + \alpha x = g(x)x, \quad \alpha > 0. \]
Let \(V(x) = \frac{1}{2}\int_{x_0}^x g(x) \, dx \). Then,
\[\frac{1}{2} \frac{d}{dt}(\dot{x}^2) + \alpha \dot{x}^2 = -\frac{d}{dt}(V(x(t))) \]
\[\Rightarrow \frac{d}{dt}(\frac{1}{2} \dot{x}^2 + V(x(t))) = -\alpha \dot{x}^2 < 0. \]
The function \(L(x, x) = \frac{1}{2} x^2 + V \) is a Lyapunov function.

Summary:
1. \(\dot{x} = -\frac{dV}{dx} \rightarrow \) conservative \(E(x, \dot{x}) \) is conserved \(\Rightarrow \) many periodic orbits.
2. \((\frac{\dot{x}}{\dot{y}}) = -\nabla V \rightarrow \) gradient system, \(V \) decreases along solutions \(\Rightarrow \) no periodic solutions.
3. \(\dot{x} + \alpha \dot{x} = -\frac{dV}{dx} \rightarrow E(x, \dot{x}) \) decreases
The travelling wave corresponds to the separatrix. Sketch of the solution.