Chapter 9: Lorenz Equations.

3-D dynamics.

Old tools:
1. Local linearization
2. Global analysis

* Trajectories can be attracted to lower dimensional subsets.

Surfaces:
 a.) Spheres
 b.) Torus.

Example:

\[x = -y + \frac{x(1-x^2+y^2+z^2)}{\sqrt{x^2+y^2+z^2}} \]

\[y = x + y(1-x^2+y^2+z^2) \sqrt{x^2+y^2+z^2} \]

\[z = z(1-x^2-y^2-z^2) \sqrt{x^2+y^2+z^2} \]

Convert to spherical polar:

\[\rho = 1 - \rho \]

\[\theta = 1 \]

\[\phi = 0 \]

* All trajectories go to sphere of radius 1 and form limit cycles of constant angle θ.

* Approach sphere along a cone.
Example:

\[
\begin{align*}
\dot{x} &= \frac{xz}{\sqrt{x^2 + y^2}} + \frac{x(1 - (x^2 + y^2 + z^2))}{\sqrt{x^2 + y^2 + z^2}} \\
\dot{y} &= \frac{yz}{\sqrt{x^2 + y^2}} + \frac{y(1 - (x^2 + y^2 + z^2))}{\sqrt{x^2 + y^2 + z^2}} \\
\dot{z} &= \frac{z(1 - (x^2 + y^2 + z^2))}{\sqrt{x^2 + y^2 + z^2}}
\end{align*}
\]

Convert to spherical polar:

\[
\begin{align*}
\dot{\tilde{x}} &= 1 - \tilde{r}^2 \\
\dot{\theta} &= 0 \\
\dot{\phi} &= 1
\end{align*}
\]

Converge to latitudes \(\Rightarrow\) This violates existence and uniqueness. This occurs because \(x^2 + y^2\) can equal 0.

Example:

\[
\begin{align*}
\tilde{x} &= (1 - r^2) \\
\dot{\theta} &= 1 \\
\dot{\phi} &= 1
\end{align*}
\]

This forms Lissajous cycles.

In these examples the long term behaviour is attracted to surfaces which we can analyze dynamics on.
Lorenz Equations:

\[
\begin{align*}
\dot{x} &= \sigma(y-x) \\
\dot{y} &= rx - y - xz \\
\dot{z} &= xy - bz
\end{align*}
\]

- \(\sigma\) - Prandtl number \(\rightarrow\) ratio of viscosity \(\rightarrow\) thermal diffusivity
- \(r\) - Rayleigh number: \(r < 1\) conduction, \(r \gg 1\) convection
- \(b\) - dimensionless aspect ratio.

Next stuff happens as we play with \(r\):

Fixed Points:
1. \((0, 0, 0) \rightarrow\) Pure conduction
2. \((\pm \sqrt{b(r-1)}, \pm \sqrt{b(r-1)}, r-1) \rightarrow\) left and right moving rolls

\[
J(0,0,0) = \begin{pmatrix}
-\sigma & \sigma & 0 \\
0 & r & -1 \\
0 & 0 & -b
\end{pmatrix}
\]

2 \(\lambda_{1,2} = -\sigma - 1 \pm \sqrt{(\sigma + 1)^2 - 4(r-\sigma r)}\)
\[
= -\sigma - 1 \pm \sqrt{(\sigma + 1)^2 - 4(r-1)(1-r)}
= -\sigma - 1 \pm \sqrt{(r-1)^2 + 4(r-1)}
\]

Case 1:

\(r < 1\), only one fixed point and it is a stable node.

How can we eliminate closed orbits? Construct a Lyapunov function.
Let \(V = \sqrt{\frac{1}{a} x^2 + y^2 + z^2} \)

\[V = \frac{1}{a} x \dot{x} + y \dot{y} + z \dot{z} \]

\[= x(y - x) + y(rx - y - xz) + z(zy - b z) \]

\[= (r+1) xy - x^2 - y^2 - b z^2 \]

\[= -(x^2 - (r+1) xy + \left(\frac{r+1}{2} \right)^2 y^2 \frac{r+1}{2}) + [(\frac{r+1}{2}) - 1] y^2 - b z^2 \]

\[= -(x - \left(\frac{r+1}{2} \right) y)^2 - (1 - \left(\frac{r+1}{2} \right)) y^2 - b z^2 \]

If \(r < 1 \), \(V < 0 \), and \(V \geq 0 \) with \(V = 0 \) if and only if \(x = y = z = 0 \).

\[\lim_{t \to \infty} V(t) = 0. \]

If \(r < 1 \), all trajectories go to the origin.

Case 2:

\(r > 1 \)

\((0, 0, 0)\) has eigenvalues \(\lambda_1 > 0, \lambda_2 < 0, \lambda_3 < 0. \)

\(\rightarrow \) This is like a saddle point.

\((\pm \sqrt{b(r-1)}, \pm \sqrt{b(r-1)}, r-1) \) now exists. \(\Rightarrow \) pitchfork bifurcation

We should do local analysis.

From now on fix \(b = \frac{g}{3}, \quad c = -10 \). We denote new fixed points by \(C^+ \) and \(C^- \).

The characteristic polynomial is given by:

\[
3 P(\lambda) = -\lambda^3 - 41 \lambda^2 - 88 \lambda - 80 (r-1).
\]

Plotting this can tell us interesting behavior.

\[\Rightarrow \text{Changing } r \text{ shifts this graph down} \]

\[\Rightarrow \text{There exists } r_g \text{ such that if } 1 < r < r_g \text{ then } C_r, C^- \text{ are stable} \]
Case 3:
\[v_s < r < v_o \]

Stability analysis tells us that they are stable spirals around the fixed points.

Case 4:
\[r = v_o \]

Unstable limit cycle born in a homoclinic bifurcation.

Case 5:
\[\mu > v_o \]

This creates a strange invariant set. Spirals may loop around a lot. Impossible to predict which fixed point we go to.
Case 6:
A Hopf bifurcation occurs at some critical r^*. The unstable limit cycle vanishes leaving behind two unstable spirals.

\[\nabla = F(\nabla), \text{let } V, \text{ denote an initial volume of initial conditions} \]
\[\Rightarrow \dot{V} = \int_S \nabla \cdot F \, dA \]
\[= \int_V \nabla \cdot F \, dV \]
\[= \int_V (-a - l - b) \, dV \]
\[= (-a - l - b) V \]
\[\Rightarrow V(t) = V_0 \exp \left((-a - l - b) t \right) . \]

All volumes shrink to nothing.

\Rightarrow The trajectories must be attracted to something...

\rightarrow 1. cannot be a surface
\rightarrow 2. cannot be a fixed point (all unstable if $r > r^*$)
\rightarrow 3. possible to eliminate limit cycles
\rightarrow 4. cannot be quasiperiodic

\Rightarrow Must be a new object!

Goals:
1. Find out what new object is.
2. Try to study chaos.
What is Chaos?

* Chaos - Aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence on initial conditions.

1. Aperiodic - There exist trajectories which do not go to fixed points, periodic orbits, or quasi-periodic orbits.
2. Sensitive Dependence - We say $\dot{x} = f(x)$ has sensitive dependence on initial data on a set A if $\forall x_0 \in A, \exists \varepsilon > 0$ such that $\forall \delta > 0, \exists x_0'$ and $T > 0$ with $|x_0 - x_0'| < \delta$ and $|x(T) - x'(T)| > \varepsilon$.

Trajectories remain bounded

Consider a spherical surface $S_R = x^2 + y^2 + (z - r - R)^2 = R^2$.

For a trajectory starting on this surface we have that

$$\frac{d}{dt} \left[x^2 + y^2 + (z - r - R)^2 \right] = 2x \ddot{x} + 2y \ddot{y} + 2(z - r - R) \ddot{z}$$

$$= -2 \left[a \dot{x}^2 + \dot{y}^2 + b \left(z - \frac{r + R}{2} \right)^2 - \frac{b(r + R)^2}{4} \right]$$

Pick R large enough that the ellipse

$$a \dot{x}^2 + \dot{y}^2 + b \left(z - \frac{r + R}{2} \right)^2 = \frac{b(r + R)^2}{4}$$

is enclosed in S_R. This guarantees S_R is a trapping region.

\Rightarrow Trajectories remain bounded and must go to something.
The Lorenz map looks at the relationship between Z_n and Z_{n+1}.

This is awesome! We can extract some order from chaos $Z_{n+1} = S(Z_n)$.

Note $|f'(Z)| > 1$. Now suppose we have a stable limit cycle. There is one closed orbit at $Z = Z^*$.
Consider
\[z_0 = z^* + \delta_0 \]
\[\delta_0 = \text{initial perturbation.} \]
\[\Rightarrow z_1 = f(z^* + \delta_0) \]
\[\Rightarrow f(z) \approx f(z^*) + f'(z^*) (z - z^*) \]
\[\Rightarrow z_1 = f(z_0) \approx z^* + f'(z^*) \delta_0 \]
\[\Rightarrow \delta_1 = z_1 - z^* \approx f'(z^*) \delta_0 \]
\[\Rightarrow |\delta_1| > |\delta_0| \]

The trajectory grows away from the set. This fixed point is
unstable.
\[\Rightarrow \text{No stable limit cycles.} \]

Attractor

An attractor is a closed set \(A \) with the following properties.

1. \(A \) is invariant. Any \(x(t) \) that starts in \(A \) remains in \(A \).
2. \(A \) attracts an open set of initial conditions. \(\exists \) exists an open set \(U \) containing \(A \) such that if \(x(0) \in U \), then \(d(x(t), A) \to 0 \) as \(t \to \infty \). The largest \(U \) is called the basin of attraction.
3. \(A \) is minimal. There is no proper subset of \(A \).

What about Double Periodic Iterations?

\[z_n = f(f(Z_n)) = f^2(Z_n) \]

\[f^2(\frac{1}{2}) \approx 0, \ f^2(\frac{1}{4}) \approx \frac{1}{4} \]

3 double period orbits all unstable.
General Case

We can continue forever

→ There exists an infinite number of unstable limit cycles.