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Abstract We consider the groups DiffB(Rn), Diff H∞(Rn), and DiffS(Rn) of smooth diffeo-
morphisms on R

n which differ from the identity by a function which is in either B (bounded
in all derivatives), H∞ = ⋂

k≥0 Hk , or S (rapidly decreasing). We show that all these groups
are smooth regular Lie groups.

Keywords Diffeomorphism group · Infinite dimensional regular Lie group ·
Convenient calculus
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1 Introduction

The purpose of this article is to prove that the following groups of diffeomorphisms on R
n

are regular (see 3.2) Lie groups:

• DiffB(Rn), the group of all diffeomorphisms which differ from the identity by a function
which is bounded together with all derivatives separately; see 3.3.

• Diff H∞(Rn), the group of all diffeomorphisms which differ from the identity by a function
in the intersection H∞ of all Sobolev spaces Hk for k ∈ N≥0; see 3.4.

• DiffS(Rn), the group of all diffeomorphisms which fall rapidly to the identity; see 3.5.

Since, we are giving a kind of uniform proof, we also mention in 3.6 the group Diffc(R
n) of

all diffeomorphisms which differ from the identity only on a compact subset, where this result
is known for many years, by and [15,16]. The groups DiffS(Rn) and partly Diff H∞(Rn) have
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been used essentially in the papers [1–4,10,18]. In particular, Diff H∞(Rn) is essential if one
wants to prove that the geodesic equation of a right Riemannian invariant metric is well-posed
with the use of Sobolov space techniques. The regular Lie groups DiffB(E) and DiffS(E)

have been treated, using single derivatives iteratively, in [23], for a Banach space E . See [7]
for the role of diffeomorphism groups in quantum physics. Andreas Kriegl, Leonard Frerick,
and Jochen Wengenroth helped with discussions and hints.

2 Some words on smooth convenient calculus

Traditional differential calculus works well for finite dimensional vector spaces and for
Banach spaces. For more general locally convex spaces, we sketch here the convenient
approach as explained in [6,8]. The main difficulty is that composition of linear mappings
stops to be jointly continuous at the level of Banach spaces, for any compatible topology. We
use the notation of [8] and this is the main reference for this section.

2.1 The c∞-topology

Let E be a locally convex vector space. A curve c : R → E is called smooth or C∞ if all
derivatives exist and are continuous—this is a concept without problems. Let C∞(R, E) be
the space of smooth functions. It can be shown that the set C∞(R, E) does not depend on
the locally convex topology of E , only on its associated bornology (system of bounded sets).
The final topologies with respect to the following sets of mappings into E coincide:

1. C∞(R, E).
2. The set of all Lipschitz curves (so that { c(t)−c(s)

t−s : t �= s, |t |, |s| ≤ C} is bounded in E ,
for each C > 0).

3. The set of injections EB → E where B runs through all bounded absolutely convex sub-
sets in E , and where EB is the linear span of B equipped with the Minkowski functional
‖x‖B := inf{λ > 0 : x ∈ λB}.

4. The set of all Mackey-convergent sequences xn → x (there exists a sequence 0 < λn ↗
∞ with λn(xn − x) bounded).

This topology is called the c∞-topology on E and we write c∞E for the resulting topological
space. In general (on the space D of test functions for example), it is finer than the given
locally convex topology, it is not a vector space topology, since scalar multiplication is no
longer jointly continuous. The finest among all locally convex topologies on E which are
coarser than c∞E is the bornologification of the given locally convex topology. If E is a
Fréchet space, then c∞E = E .

2.2 Convenient vector spaces

A locally convex vector space E is said to be a convenient vector space if one of the following
equivalent conditions is satisfied (called c∞-completeness):

1. For any c ∈ C∞(R, E) the (Riemann-) integral
∫ 1

0 c(t)dt exists in E .
2. Any Lipschitz curve in E is locally Riemann integrable.
3. A curve c : R → E is smooth if and only if λ ◦ c is smooth for all λ ∈ E∗, where E∗ is

the dual consisting of all continuous linear functionals on E . Equivalently, we may use
the dual E ′ consisting of all bounded linear functionals.
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4. Any Mackey–Cauchy sequence (i. e. tnm(xn − xm) → 0 for some tnm → ∞ in R)
converges in E . This is visibly a mild completeness requirement.

5. If B is bounded closed absolutely convex, then EB is a Banach space.
6. If f : R → E is scalarwise Lipk , then f is Lipk , for k ≥ 0.
7. If f : R → E is scalarwise C∞, then f is differentiable at 0.
8. If f : R → E is scalarwise C∞, then f is C∞.

Here, a mapping f : R → E is called Lipk if all derivatives up to order k exist and are
Lipschitz, locally on R. That f is scalarwise C∞ means λ ◦ f is C∞ for all continuous
linear functionals on E .

2.3 Smooth mappings

Let E , F , and G be convenient vector spaces, and let U ⊂ E be c∞-open. A mapping
f : U → F is called smooth or C∞, if f ◦ c ∈ C∞(R, F) for all c ∈ C∞(R, U ).

The main properties of smooth calculus are the following:

1. For mappings on Fréchet spaces this notion of smoothness coincides with all other rea-
sonable definitions. Even on R

2 this is non-trivial.
2. Multilinear mappings are smooth if and only if they are bounded.
3. If f : E ⊇ U → F is smooth then the derivative d f : U × E → F is smooth, and also

d f : U → L(E, F) is smooth where L(E, F) denotes the space of all bounded linear
mappings with the topology of uniform convergence on bounded subsets.

4. The chain rule holds.
5. The space C∞(U, F) is again a convenient vector space where the structure is given by

the obvious injection

C∞(U, F)
C∞(c,�)−→

∏

c∈C∞(R,U ),�∈F∗
C∞(R, R), f �→ (� ◦ f ◦ c)c,�,

where C∞(R, R) carries the topology of compact convergence in each derivative sepa-
rately.

6. The exponential law holds: For c∞-open V ⊂ F ,

C∞(U, C∞(V, G)) ∼= C∞(U × V, G)

is a linear diffeomorphism of convenient vector spaces.
7. A linear mapping f : E → C∞(V, G) is smooth (by (2) equivalent to bounded) if and

only if E
f−→ C∞(V, G)

evv−→ G is smooth for each v ∈ V . This is called the smooth
uniform boundedness theorem [8, 5.26].

(8) The following canonical mappings are smooth.

ev : C∞(E, F) × E → F, ev( f, x) = f (x)

ins : E → C∞(F, E × F), ins(x)(y) = (x, y)

( )∧ : C∞(E, C∞(F, G)) → C∞(E × F, G)

( )∨ : C∞(E × F, G) → C∞(E, C∞(F, G))

comp : C∞(F, G) × C∞(E, F) → C∞(E, G)

C∞( , ) : C∞(F, F1) × C∞(E1, E) → C∞(C∞(E, F), C∞(E1, F1))

( f, g) �→ (h �→ f ◦ h ◦ g)
∏

:
∏

C∞(Ei , Fi ) → C∞ (∏
Ei ,

∏
Fi

)
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Note that the conclusion of (6) is the starting point of the classical calculus of variations,
where a smooth curve in a space of functions was assumed to be just a smooth function
in one variable more. It is also the source of the name convenient calculus. This and some
other obvious properties already determine convenient calculus. There are, however, smooth
mappings which are not continuous. This is unavoidable and not so horrible as it might appear
at first sight. For example, the evaluation E × E∗ → R is jointly continuous if and only
if E is normable, but it is always smooth. Clearly smooth mappings are continuous for the
c∞-topology. This ends our review of the standard results of convenient calculus. But we
will need more.

Theorem 2.1 [6, 4.1.19] Let c : R → E be a curve in a convenient vector space E. Let
V ⊂ E ′ be a subset of bounded linear functionals such that the bornology of E has a basis
of σ(E, V)-closed sets. Then the following are equivalent:

1. c is smooth
2. There exist locally bounded curves ck : R → E such that � ◦ c is smooth R → R with

(� ◦ c)(k) = � ◦ ck , for each � ∈ V .

If E is reflexive, then for any point separating subset V ⊂ E ′ the bornology of E has a basis
of σ(E, V)-closed subsets, by [6, 4.1.23].

This theorem is surprisingly strong: note that V does not need to recognize bounded sets.

2.4 Faa di Bruno formula

Let g ∈ C∞(Rn, R
k) and let f ∈ C∞(Rk, R

l). Then the p-th deivative of f ◦ g looks as
follows where sym p denotes symmetrization of a p-linear mapping:

d p( f ◦ g)(x)

p! = sym p

⎛

⎜
⎜
⎜
⎝

p∑

j=1

∑

α∈N
j
>0

α1+···+α j =p

d j f (g(x))

j !
(

dα1 g(x)

α1! , . . . ,
dα j g(x)

α j !
)

⎞

⎟
⎟
⎟
⎠

The one-dimensional version is due to Faà di Bruno [5], the only beatified mathematician.
The formula is seen by composing the Taylor series.

3 Groups of smooth diffeomorphisms

3.1 Model spaces for Lie groups of diffeomorphism

If we consider the group of all orientation preserving diffeomorphisms Diff(Rn) of R
n , it

is not an open subset of C∞(Rn, R
n) with the compact C∞-topology. So it is not a smooth

manifold in the usual sense, but we may consider it as a Lie group in the cartesian closed
category of Frölicher spaces, see [8, Section 23] with the structure induced by the injection
f �→ ( f, f −1) ∈ C∞(Rn, R

n)×C∞(Rn, R
n). Or one can use the theory of smooth manifolds

based on smooth curves instead of charts from [11,12], which agrees with the usual theory
up to Banach manifolds.

We shall now describe regular Lie groups in Diff(Rn) which are given by diffeomorphisms
of the form f = Id +g where g is in some specific convenient vector spaces of bounded
functions in C∞(Rn, R

n). Now, we discuss these spaces on R
n , we describe the smooth

curves in them, and we describe the corresponding groups.
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3.2 Regular Lie groups

We consider a smooth Lie group G with Lie algebra g = TeG modelled on convenient vector
spaces. The notion of a regular Lie group is originally due to Omori and collaborators (see
[19,20]) for Fréchet Lie groups, was weakened and made more transparent by Milnor [17]
and carried over to convenient Lie groups in [9], see also [8, 38.4]. A Lie group G is called
regular if the following holds:

• For each smooth curve X ∈ C∞(R, g) there exists a curve g ∈ C∞(R, G) whose right
logarithmic derivative is X , i.e.,

{
g(0) = e

∂t g(t) = Te(μ
g(t))X (t) = X (t).g(t)

where μ : G × G → G is multiplication with μ(g, h) = g.h = μg(h) = μh(g). The
curve g is uniquely determined by its initial value g(0), if it exists.

• Put evolrG(X) = g(1) where g is the unique solution required above. Then evolrG :
C∞(R, g) → G is required to be C∞ also.

3.3 The group DiffB(Rn)

The space B(Rn) (called DL∞(Rn) by Schwartz [21]) consists of all smooth functions with
all derivatives (separately) bounded. It is a Fréchet space. By [22], the space B(Rn) is linearly
isomorphic to �∞⊗̂ s for any completed tensor product between the projective one and the
injective one, where s is the nuclear Fréchet space of rapidly decreasing real sequences. Thus,
B(Rn) is not reflexive and not nuclear.

The space C∞(R, B(Rn)) of smooth curves in B(Rn) consists of all functions c ∈
C∞(Rn+1, R) satisfying the following property:

• For all k ∈ N≥0, α ∈ N
n≥0 and each t ∈ R the expression ∂k

t ∂α
x c(t, x) is uniformly

bounded in x ∈ R
n , locally in t .

To see this, we use 2.1 for the set {evx : x ∈ R} of point evaluations in B(Rn). Here,

∂α
x = ∂ |α|

∂xα and ck(t) = ∂k
t f (t, ).

Diff+
B(Rn) = {

f = Id +g : g ∈ B(Rn)n, det(In +dg) ≥ ε > 0
}

denotes the correspond-
ing group, see Theorem 3.1 below.

3.4 The group Diff H∞(Rn)

The space H∞(Rn) = ⋂
k≥1 Hk(Rn) is the intersection of all Sobolev spaces which is a

reflexive Fréchet space. It is called DL2(Rn) by Schwartz in [21]. By [22], the space H∞(Rn)

is linearly isomorphic to �2⊗̂ s. Thus it is not nuclear, not Schwartz, not Montel, but still
smoothly paracompact.

The space C∞(R, H∞(Rn)) of smooth curves in H∞(Rn) consists of all functions c ∈
C∞(Rn+1, R) satisfying the following property:

• For all k ∈ N≥0, α ∈ N
n≥0 the expression ‖∂k

t ∂α
x f (t, )‖L2(Rn) is locally bounded near

each t ∈ R.

The proof is literally the same as for B(Rn), noting that the point evaluations are continuous
on each Sobolev space Hk with k > n

2 .
Diff+

H∞(Rn) = {
f = Id +g : g ∈ H∞(Rn), det(In +dg) > 0

}
denotes the correponding

group, see Theorem 3.1 below.
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3.5 The group DiffS(Rn)

The algebra S(Rn) of rapidly decreasing functions is a reflexive nuclear Fréchet space.
The space C∞(R, S(Rn)) of smooth curves in S(Rn) consists of all functions c ∈

C∞(Rn+1, R) satisfying the following property:

• For all k, m ∈ N≥0 and α ∈ N
n≥0, the expression (1 + |x |2)m∂k

t ∂α
x c(t, x) is uniformly

bounded in x ∈ R
n , locally uniformly bounded in t ∈ R.

Diff+
S (Rn) = {

f = Id +g : g ∈ S(Rn)n, det(In + dg) > 0
}

is the correponding group.

3.6 The group Diffc(R
n)

The algebra C∞
c (Rn) of all smooth functions with compact support is a nuclear (LF)-space.

The space C∞(R, C∞
c (Rn)) of smooth curves in C∞

c (Rn) consists of all functions f ∈
C∞(Rn+1, R) satisfying the following property:

• For each compact interval [a, b] in R there exists a compact subset K ⊂ R
n such that

f (t, x) = 0 for (t, x) ∈ [a, b] × (Rn \ K ).

Diffc(R
n) = {

f = Id +g : g ∈ C∞
c (Rn)n, det(In + dg) > 0

}
is the correponding group.

3.7 Ideal properties of function spaces

The function spaces are boundedly mapped into each other as follows:

C∞
c (Rn) �� S(Rn) �� H∞(Rn) �� B(Rn)

and each space is a bounded locally convex algebra and a bounded B(Rn)-module. Thus,
each space is an ideal in each larger space.

Theorem 3.1 The sets of diffeomorphisms Diffc(R
n), DiffS(Rn), Diff H∞(Rn), and DiffB

(Rn) are all smooth regular Lie groups in the sense of 3.2. We have the following smooth
injective group homomorphisms

Diffc(R
n) �� DiffS(Rn) �� Diff H∞(Rn) �� DiffB(Rn) .

Each group is a normal subgroup in any other in which it is contained, in particular in
DiffB(Rn).

The case Diffc(R
n) is well known, see for example, [8, 43.1]. The one-dimensional version

DiffS(R) was treated in [13, 6.4].

Proof Let A denote any of B, H∞, S, or c, and let A(Rn) denote the corresponding function
space as described in 3.3–3.6. Let f (x) = x + g(x) for g ∈ A(Rn)n with det(In + dg) > 0
and for x ∈ R

n . We have to check that each f as described is a diffeomorphism. By the
inverse function theorem, f is a locally a diffeomorphism everywhere. Thus, the image of f
is open in R

n . We claim that it is also closed. So let xi ∈ R
n with f (xi ) = xi + g(xi ) → y0

in R
n . Then f (xi ) is a bounded sequence. Since g ∈ A(Rn) ⊂ B(Rn), the xi also form a

bounded sequence, thus contain a convergent subsequence. Without loss let xi → x0 in R
n .

Then f (xi ) → f (x0) = y0. Thus, f is surjective. This also shows that f is a proper mapping
(i.e., compact sets have compact inverse images under f ). By [14, 17.2], a proper surjective
submersion is the projection of a smooth fiber bundle. In our case here f has discrete fibers,
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so f is a covering mapping and a diffeomorphism since R
n is simply connected. In each

case, the set of g used in the definition of DiffA is open in A(Rn)n .
Let us next check that DiffA(Rn)0 is closed under composition. We have

((Id + f ) ◦ (Id +g))(x) = x + g(x) + f (x + g(x)), (1)

and we have to check that x �→ f (x + g(x)) is in A(Rn) if f, g ∈ A(Rn)n . For A = B, this
follows by the Faà di Bruno formula 2.4. For A = S, we need furthermore the following
estimate:

(∂α
x f )(x + g(x)) = O

( 1

(1 + |x + g(x)|2)k

)
= O

( 1

(1 + |x |2)k

)
(2)

which holds, since

1 + |x |2
1 + |x + g(x)|2 is globally bounded.

For A = H∞, we also need that
∫

Rn

|(∂α
x f )(x + g(x))|2 dx =

∫

Rn

|(∂α f )(y)|2 dy

| det(In + dg)((Id +g)−1(y))|

≤ C(g)

∫

Rn

|(∂α f )(y)|2 dy; (3)

this holds, since the denominator is globally bounded away from 0 since g and dg vanish
at ∞ by the lemma of Riemann-Lebesque. The case A(Rn) = C∞

c (Rn) is easy and well
known.

Let us check next that multiplication is smooth on DiffA(Rn). Suppose that the curves
t �→ Id + f (t, ) and t �→ Id +g(t, ) are in C∞(R, DiffA(Rn)) which means that the
functions f, g ∈ C∞(Rn+1, R

n) satisfy condition • of either 3.3, 3.4, 3.5, or 3.6. We have to
check that f (t, x + g(t, x)) satisfies the same condition •. For this, we reread the proof that
composition preserves DiffA(Rn) and pay attention to the further parameter t .

To check that the inverse (Id +g)−1 is again an element in DiffA(Rn) for g ∈ A(Rn)n ,
we write (Id +g)−1 = Id + f and we have to check that f ∈ A(Rn)n .

(Id + f ) ◦ (Id +g) = Id �⇒ x + g(x) + f (x + g(x)) = x

�⇒ x �→ f (x + g(x)) = −g(x) is in A(Rn)n . (4)

We treat again first the case A = B. We know already that Id +g is a diffeomorphism. By
Definition 3.3, we have det(In + dg(x)) ≥ ε > 0 for some ε. This implies that

‖(In + dg(x))−1‖L(Rn ,Rn) is globally bounded, (5)

using the inequality ‖A−1‖ ≤ ‖A‖n−1

| det(A)| for any linear A : R
n → R

n . To see this, we write

A = U S with U orthogonal and S = diag(s1 ≥ s2 ≥ · · · ≥ sn ≥ 0). Then ‖A−1‖ =
‖S−1U−1‖ = ‖S−1‖ = 1/sn and | det(A)| = det(S) = s1.s2 . . . sn ≤ sn−1

1 .sn = ‖A‖n−1.sn .
Moreover,

(In + d f (x + g(x)))(In + dg(x)) = In

�⇒ det(In + d f (x + g(x))) = det(In + dg(x))−1 ≥ ‖In + dg(x)‖−n ≥ η > 0
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for all x . For higher derivatives, we write the Faa di Bruno formula 2.4 in the following form:

d p( f ◦ (Id +g))(x)

p!

= sym p

⎛

⎜
⎜
⎜
⎝

p∑

j=1

∑

α∈N
j
>0

α1+···+α j =p

d j f (x + g(x))

j !
(

dα1(Id +g)(x)

α1! , . . . ,
dα j (Id +g)(x)

α j !
)

⎞

⎟
⎟
⎟
⎠

= d p f (x + g(x))

p!
(

Id +dg(x), . . . , Id +dg(x)
)

+ sym p

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p−1∑

j=1

∑

α∈N
j
>0

α1+···+α j =p
(hα1 ,...,hα j )

d j f (x + g(x))

j !
(

dα1 hα1(x)

α1! , . . . ,
dα j hα j (x)

α j !
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6)

where hαi (x) is g(x) for αi > 1 (there is always such an i), and where hαi (x) = x or g(x) if
αi = 1. Now, we argue as follows: the left-hand side is globally bounded. By (5), we know
that In + dg(x) : R

n → R
n is invertible with ‖(In + dg(x))−1‖L(Rn ,Rn) globally bounded.

Thus, we can conclude by induction on p that d p f (x + g(x)) is bounded uniformly in x ,
thus also uniformly in y = x + g(x) ∈ R

n . For general A, we note that the left-hand side is
in A. Since, we already know that f ∈ B, and since A is a B-module, the last term is in A.
Thus, also the first term is in A, and any summand there containing at least one dg(x) is in
A, so the unique summand d p f (x + g(x)) is also in A as a function of x . It is thus in rapidly
decreasing or in L2 as a function of y = x + g(x), by arguing as in (2) or (3) above. Thus,
inversion maps DiffA(R) into itself.

Next, we check that inversion is smooth on DiffA(Rn). We retrace the proof that inversion
preserves DiffA assuming that g(t, x) satisfies condition • of either 3.3, 3.4, 3.5, or 3.6. We
see again that f (t, x + g(t, x)) = −g(t, x) satisfies the condition 3.1 as a function of t, x ,
and we claim that f then does the same. We reread the proof paying attention to the parameter
t and see that the same condition • is satisfied.

We claim that Diff A(R) is also a regular Lie group in the sense of 3.2. So let t �→ X (t, )

be a smooth curve in the Lie algebra XA(Rn) = A(Rn)n , i.e., X satisfies condition • of either
3.3, 3.4, 3.5, or 3.6. The evolution of this time-dependent vector field is the function given
by the ODE

Evol(X)(t, x) = x + f (t, x),
{

∂t (x + f (t, x)) = ft (t, x) = X (t, x + f (t, x)),

f (0, x) = 0.
(7)

We have to show first that f (t, ) ∈ A(Rn)n for each t ∈ R, second that it is smooth in t
with values in A(Rn)n , and third that X �→ f is also smooth. For 0 ≤ t ≤ C , we consider

| f (t, x)| ≤
t∫

0

| ft (s, x)|ds =
t∫

0

|X (s, x + f (s, x))| ds. (8)
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Since A ⊆ B, the vector field X (t, y) is uniformly bounded in y ∈ R
n , locally in t . So the

same is true for f (t, x) by (8).
Next, consider

∂t dx f (t, x) = dx (X (t, x + f (t, x)))

= (dx X)(t, x + f (t, x)) + (dx X)(t, x + f (t, x)).dx f (t, x)

‖dx f (t, x)‖ ≤
t∫

0

‖(dx X)(s, x + f (s, x))‖ds

+
t∫

0

‖(dx X)(s, x + f (s, x))‖.‖dx f (s, x)‖ds

= : α(t, x) +
t∫

0

β(s, x).‖dx f (s, x)‖ds (9)

By the Bellman–Grönwall inequality,

‖dx f (t, x)‖ ≤ α(t, x) +
t∫

0

α(s, x).β(s, x).e
∫ t

s β(σ,x) dσ ds,

which is globally bounded in x , locally in t . For higher derivatives in x (where p > 1) we
use Faá di Bruno’s formula in the form

∂t d
p
x f (t, x) = d p

x (X (t, x + f (t, x))) = sym p
⎛

⎜
⎜
⎜
⎝

p∑

j=1

∑

α∈N
j
>0

α1+···+α j =p

(d j
x X)(t, x + f (t, x))

j !

(
dα1

x (x + f (t, x))

α1! , . . . ,
d

α j
x (x + f (t, x))

α j !

)
⎞

⎟
⎟
⎟
⎠

= (dx X)(t, x + f (t, x))
(
d p

x f (t, x)
) + sym p

⎛

⎜
⎜
⎜
⎝

p∑

j=2

∑

α∈N
j
>0

α1+···+α j =p

(d j
x X)(t, x + f (t, x))

j !

(
dα1

x (x + f (t, x))

α1! , . . . ,
d

α j
x (x + f (t, x))

α j !

)
⎞

⎟
⎟
⎟
⎠

We can assume recursively that d j
x f (t, x) is globally bounded in x , locally in t , for j < p.

Then, we have reproduced the situation of (9) (with values in the space of symmetric p-linear
mappings (Rn)p → R

n) and we can repeat the argument above involving the Bellman-
Grönwall inequality to conclude that d p

x f (t, x) is globally bounded in x , locally in t . To
conclude the same for ∂m

t d p
x f (t, x) we just repeat the last arguments for ∂m

t f (t, x). So we
have now proved that f ∈ C∞(R, XB(Rn)). Since x �→ x + f (t, x) is a diffeomorphism
for each t as the solution of a flow equation, it is thus in DiffB(Rn). In order to prove that
C∞(R, XB(Rn)) � X �→ Evol(X)(1, ) ∈ DiffB(Rn) is smooth, we consider a smooth
curve X in C∞(R, XB(Rn)); thus X (t1, t2, x) is smooth on R

2 × R
n , globally bounded in

x in each derivative separately, locally in t = (t1, t2) in each derivative. Or, we assume
that t is two-dimensional in the argument above. Then it suffices to show that (t1, t2) �→
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X (t1, t2, ) ∈ XB(Rn) is smooth along smooth curves in R
2, and we are again in the

situation we have just treated. Thus, DiffB(Rn) is a regular Lie group.
If A = S, we already know that f (s, x) is globally bounded in x , locally in s. Thus, we

may insert X (s, x + f (s, x)) = O( 1
(1+|x+ f (s,x)|2)k ) = O( 1

(1+|x |2)k ) into (8) and can conclude

that f (t, x) = O( 1
(1+|x |2)k ) globally in x , locally in t , for each k. Using this argument, we

can repeat the proof for the case A = B from above and conclude that DiffS(Rn) is a regular
Lie group.

If A = H∞, we first consider the differential version of (8),

‖dx f (s, x)‖ =
∥
∥
∥

t∫

0

dx (X (s, ))(x + f (s, x)).(In + d f (s, )(x)) ds
∥
∥
∥

≤
t∫

0

∥
∥dx (X (s, ))(x + f (s, x))

∥
∥.C ds (10)

since dx f (s, x) is globally bounded in x , locally in s, by the case A = B. The same holds
for f (s, x). Moreover, X (s, x) vanishes at x = ∞ by the lemma of Riemann–Lebesque for
each x and it is continuous in all variables, so that the same holds for f (s, x) by (8). Now,
we consider

∫

Rn

‖(d p
x f )(t, x)‖2 dx =

∫

Rn

∥
∥
∥

t∫

0

d p
x
(
X (s, Id + f (s, ))

)
(x) ds

∥
∥
∥

2
dx . (11)

We apply the Faá di Bruno formula in the form (6) to the integrand, remember that we already
know that each dαi (Id + f (s, ))(x) is globally bounded, locally in s, thus (11) is

≤
∫

Rn

( t∫

0

p∑

j=1

‖(d j
x X)(s, x + f (s, x))‖.C j ds

)2
dx

=
∫

Rn

( t∫

0

p∑

j=1

‖(d j
x X)(s, y)‖.C j ds

)2 dy

| det(In + d f (s, ))((In + f (s, ))−1(y)|

which is finite, since X (s, ) ∈ H∞ and since the determinand in the denominator is
bounded away from zero — we just checked that dx f (s, ) vanishes at infinity. Then we
repeat this for ∂m

t d p
x f (t, x). This shows that Evol(X)(t, ) ∈ Id +H∞(Rn)n . As solution

of an evolution equation for a bounded non-autonomous vector field it is a diffeomorphism,
and thus in Diff H∞(Rn) for each t . By the same trick as in the case A = B, we can conclude
that Diff H∞(Rn) is a regular Lie group.

We prove now that DiffS(Rn) is a normal subgroup of DiffB(Rn). So let g ∈ B(Rn)n

with det(In + dg(x)) ≥ ε > 0 for all x , and s ∈ S(Rn)n with det(In + ds(x)) > 0 for all x .
We consider

(Id +g)−1(x) = x + f (x) for f ∈ B(Rn)n ⇐⇒ f (x + g(x)) = −g(x)
(
(Id +g)−1 ◦ (Id +s) ◦ (Id +g)

)
(x) = (

(Id + f ) ◦ (Id +s) ◦ (Id +g)
)
(x)

= x + g(x) + s(x + g(x)) + f
(
x + g(x) + s(x + g(x))

)

= x + s(x + g(x)) − f (x + g(x)) + f
(
x + g(x) + s(x + g(x))

)
.

123

Author's personal copy



Ann Glob Anal Geom

Since g(x) is globally bounded, we get s(x+g(x)) = O((1+|x+g(x)|)−k) = O((1+|x |)−k)

for each k. For d p
x (s ◦ (Id +g))(x), this follows from the Faá die Bruno formula in the form

of (6). Moreover, we have

f
(
x + g(x) + s(x + g(x))

) − f (x + g(x))

=
1∫

0

d f
(
x + g(x) + ts(x + g(x))

)
(s(x + g(x))) dt

which is in S(Rn)n as a function of x , since d f is in B and s(x + g(x)) is in S.
Finally, we prove that Diff H∞(Rn) is a normal subgroup of DiffB(Rn). We redo the

last proof under the assumption that s ∈ H∞(Rn)n . By the argument in (3), we see that
s(x + g(x)) is in H∞ as a function of x . The rest is as above, since H∞ is an ideal in B as
noted in 3.7. ��
Corollary 3.2 DiffB(Rn) acts on 
c, 
S and 
H∞ of any tensorbundle over R

n by pullback.
The infinitesimal action of the Lie algebra XB(Rn) on these spaces by the Lie derivative thus
maps each of these spaces into itself. A fortiori, Diff H∞(Rn) acts on 
S of any tensor bundle
by pullback.

Proof Since Diffc(R
n), DiffS(Rn), and Diff H∞(Rn) are normal subgroups in DiffB(Rn),

their Lie algebras XA(Rn) = 
A(T R
n) are all invariant under the adjoint action of

DiffB(Rn). This extends to all tensor bundles. The Lie derivatives are just the infinitesi-
mal versions of the adjoint actions. ��
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