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1.1 Introduction

The formulation of the vision problem as a problem in Bayesian inference (Mumford,
1996, 2002; Forsyth and Ponce, 2002) is, by now, well-known and widely accepted
in the computer vision community. In fact, the insight that the problem of recon-
structing 3D information from a 2D image is ill-posed and needs inference can be
traced back to the Arab scientist Ibn Al-Haytham (known to Europe as Alhazan)
around the year 1000 (Haytham, c.1000). Inheriting a complete hodge-podge of
conflicting theories from the Greeks1, Al-Haytham for the first time demonstrated
that light rays originated only in external physical sources, moved in straight lines,
reflecting and refracting, until they hit the eye; and that the resulting signal needed
to be and was actively decoded in the brain using a largely unconscious and very
rapid inference process based on past visual experiences. In the modern era, the
inferences underlying visual perception have been studied by many people, notably
H. Helmholtz, E. Brunswik (Brunswik, 1956) and J. J. Gibson.

In mathematical terms, the Bayesian formulation is as follows: let I be the
observed image, a 2D array of pixels (black and white or colored or possibly a
stereoscopic pair of such images). Here we are assuming a static image2. Let w
stand for variables which describe the external scene generating the image. Such
variables should include depth and surface orientation information (Marr’s 21

2
D

sketch), location and boundaries of the principle objects in view, their surface

1. The chief mistake of the Greeks was their persistent belief that the eye must emit some
sort of ray in order to do something equivalent to touching the visible surfaces.
2. This is certainly biologically unrealistic. Life requires rapid analysis of changing scenes.
But this article, like much of vision research, simplifies its analysis by ignoring time
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albedos, location of light sources and labelling of object categories and possibly
object identities. Then two stochastic models, learned from past experience, are
required: a prior model p(w) specifying what scenes are likely in the world we live
in and an imaging model p(I|w) specifying what images should look like, given the
scene. Then by Bayes’s rule:Bayes’ rule

p(w|I) =
p(I|w)p(w)

p(I)
∝ p(I|w)p(w).

Bayesian inference consists is fixing the observed value of I and inferring that w
equals that value which maximizes p(w|I) or equivalently maximizes p(I|w)p(w).
This is a fine general framework, but to implement or even test it requires (a) a
theory of stochastic models of a very comprehensive sort which can express all the
complex but variable patterns which the variables w and I obey, (b) a method of
learning from experience the many parameters which such theories always contain
and (c) a method of computing the maximum of p(w|I).

This chapter will be concerned only with problem (a). Many critiques of vision
algorithms have failed to allow for the fact that these are three separate problems:
if (b) or (c) are badly implemented, the resulting problems do not imply that the
theory in (a) is bad. For example, very slow algorithms of type (c) may reasonably
be used to test ideas of type (a). Progress in understanding vision does not require
all these problems to be solved at once. Therefore, it seems to me legitimate to
isolate problems of type (a).

In the rest of this chapter, I will review some of the progress in constructing
these models. Specifically, I will consider, in Section 1.2, models of the empirical
probability distribution p(I) inferred from large databases of natural images. Then,
in Section 1.3, I will consider the problem of the first step in ‘intermediate’
vision: inferring the regions which should be grouped together as single objects
or structures, problems which include segmentation and gestalt grouping, the basic
grammar of image analysis. Finally in Section 1.4, I look at the problem of priors on
2D shapes and the related problem of what it means for two shapes to be ‘similar’.
Obviously, all of these are huge topics and I cannot hope to give a comprehensive
view of work on any of them. Instead, I shall give my own views of some of the
important issues and open problems and outline the work that I know well. As this
inevitably emphasizes the work of my associates, I must beg indulgence from those
whose work I have omitted.

1.2 Statistics of the image alone

The most direct approach to studying images is to ask whether we can find good
models for images without any hidden variables. This means first creating large
databases of images I which we believe are reasonably random samples of all
possible images of the world we live in. Then we can study this database with all the
tools of statistics, computing the responses of various linear and nonlinear filters
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and looking at the individual and joint histograms of their values. Nonlinear should
be taken in the broadest sense, including order statistics or topological analyses.
We then seek to isolate the most important properties these statistics have and to
create the simplest stochastic models p(I) which duplicate or approximate these
statistics. The models can be further tested by sampling from them and seeing if
the resulting artificial images have the same ‘look and feel’ as natural images. Or
if not, what are the simplest properties of natural images that have we failed to
capture. Another recent survey of such models is referred to (Lee et al., 2003b).

1.2.1 High kurtosis as the universal clue to discrete structure

The first really striking thing about filter responses is that they always have large
kurtosis. It is strange that electrical engineers designing TV sets in the 1950’s do
not seem to have pointed this out and this fact first appeared in the work of David
Field (Field, 1987). By kurtosis, we mean the normalized fourth moment. If x is akurtosis
random real number, its kurtosis is

κ(x) = E((x − x̄)4)/E((x− x̄)2)2.

Every normal variable has kurtosis 3; a variable which has no tails (e.g. uniformly
distributed on an interval) or is bimodal and small at its mean tends to have
kurtosis less than 3; a variable with heavy tails or large peak at its mean tends to
have kurtosis larger than 3. The empirical result which is observed for images is
that for any linear filter F with zero mean, the values x = (F ∗I)(i, j) of the filtered
image follow a distribution with kurtosis larger than 3. The simplest case of this is
the difference of adjacent pixel values, the discrete derivative of the image I. But
it has been found (Huang, 2000) to hold even for random mean 0 filters supported
in an 8 × 8 window.

This high kurtosis is shown in Figure 1.1, from the thesis of J. Huang (Huang,
2000). This data was extracted from a large database of high resolution, fully
calibrated images of cities and country taken in Holland by van Hateren, (van
Hateren, 1998). It is important, when studying tails of distributions, to plot the
logarithm of the probability or frequency, as in this figure, not the raw probability.
If you plot probabilities, all tails look alike. But if you plot their logarithms, then a
normal distribution becomes a downwards facing parabola (since log(e−x

2
) = −x2),

so heavy tails appear clearly as curves which do not point down so fast.stationary
Markov process It is a well-known fact from probability theory that if Xt is a stationary Markov

stochastic process, then the kurtosis of Xt − Xs being greater than 3 means that
the process Xt has discrete jumps. In the case of vision, we have samples from an
image I(s, t) depending on two variables rather than one and the zero-mean filter
is a generalization of the difference Xt −Xs. Other signals generated by the world,
such as sound or prices, are functions of one variable, time. A nice elementary
statement of the link between kurtosis and jumps is given by the following result
taken from (Mumford and Desolneux):
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Figure 2.47: The empirical pdf of some random mean-0 �lter reactions

filterid � S � H �1 D(p0 k p1) �2 D(p0 k p2)
1 0.316 -0.0145 7.95 0.194 0.806 0.00278 0.835 0.00304

2 0.302 -0.00828 7.39 0.132 0.798 0.00469 0.872 0.00644

3 0.352 -0.0112 6.99 0.376 0.848 0.00303 0.903 0.00391

4 0.244 -0.0151 7.72 -0.179 0.793 0.00396 0.849 0.00499

5 0.297 0.021 7.42 0.111 0.808 0.00479 0.87 0.00599

6 0.292 -0.0112 7.58 0.0814 0.797 0.00503 0.859 0.00624

7 0.445 0.0288 8.47 0.651 0.753 0.00268 0.805 0.00375

8 0.33 0.0554 7.54 0.263 0.808 0.00415 0.862 0.00508

9 0.343 0.00999 7.38 0.319 0.81 0.00436 0.872 0.00558

10 0.317 -0.0218 7.43 0.205 0.812 0.00327 0.869 0.00435

Table 2.13: constants of random mean-0 �lter coeÆcients

others. We called such random �lters the binary random mean-0 �lters. Figure 2.48 and

Table 2.14 show the results for some binary random mean-0 �lters.

We can see that in both experiments, the distributions of the �lter reactions are very

similar to each other. Also, the log(pdf) of all the distributions show linear tail, as we ob-

served in the derivative statistics calculated from the vegetation category (see section 2.2.2),

this fact can also be con�rmed by the � values in the two tables where they are all close to

1.

75

Figure 1.1 Histograms of filter values from the thesis of J. Huang, using the van
Hateren database. On the left, the filter is the difference of (a) horizontally adjacent
pixels, and (b) of adjacent 2× 2, (c) 4× 4 and (d) 8× 8 blocks; on the right, several
random mean 0 filters with 8 × 8 pixel support have been used. The kurtosis of all
these filter responses is between 7 and 15. Note that the vertical axis is log of the
frequency, not frequency. The histograms on the left are displaced vertically for
legibility and the dotted lines indicate one standard deviation.

Theorem 1.1

Let x be any real random variable which we normalize to have mean 0 and standard
deviation 1. Then there is a constant c > 0 depending only on x such that if, for
some n, x is the sum:

x = y1 + y2 + · · ·+ yn

where the yi are independent and identically distributed, then

Prob
(
max
i

|yi| ≥
√

(κ(x) − 3)/2
)
≥ c.

A striking application of this is to the stock market. Let x be the log price
change of the opening and closing price of some stock. If we assume price changes
are Markov, as many have, and use the experimental fact that price changes have
kurtosis greater than 3, then it implies that stock prices cannot be modeled as a
continuous function of time. In fact, in my own fit of some stock market data, I
found the kurtosis of log price changes to be infinite: the tails of the histogram of
log-price changes appeared to be polynomial, like 1/xα with α between 4 and 5.

An important question is: how big are the tails of the histograms of image filter
statistics. Two models have been proposed for these distributions. The first is the
most commonly used model, the ‘generalized Laplacian’ distributions:generalized

Laplacian
distribution plaplace(x) =

e−|x/a|b

Z
, Z =

∫
e−|y/a|bdy.



Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/02/27 12:16

1.2 Statistics of the image alone 7

Here a is a scale parameter and b controls how large the tails are (larger tails for
smaller b). Experimentally, these work well and values of b between 0.5 and 1 are
commonly found. However, no rationale for their occurrence seems to have been
found. The second are the Bessel distributions (Grenander and Srivastava, 2001;Bessel

distribution Wainwright and Simoncelli, 2000):

pbessel(x) = q̂(ξ), q(ξ) = 1/(1 + (aξ2))b/2.

a is again a scale parameter, b controls the kurtosis (as before, larger kurtosis
for smaller b) and the hat means Fourier transform. pbessel(x) can be evaluated
explicitly using Bessel functions. The tails, however, are all asymptotically like those
of double exponentials e−|x/a|, regardless of b. The key point is these distributions
arise as the distributions of products r · x of Gaussian random variables x and an
independent positive ‘scaling’ random variable r. For some values of b, the variable
r is distributed like ‖~x‖ for a Gaussian ~x ∈ Rn, but in general its square has a
Gamma (or Chi-squared) distribution. The great appeal of such a product is that
images are also formed as products, especially as products of local illumination,
albedo and reflectance factors. This may well be the deep reason for the validity of
the Bessel models.

Convincing tests of which model is better have not been made. The difficulty is
that they differ most in their tails, where data is necessarily very noisy. The best
approach might be to use the Kolmogorov-Smirnov statistic and compare the best
fitting models for this statistic of each type.

The world seems to be composed of discrete jumps in time and discrete objects in
space. This profound fact about the physical nature of our world is clearly mirrored
in the simple statistic — kurtosis.

1.2.2 Scaling properties of images and their implications
scale invariance

After high kurtosis, the next most striking statistical property of images is their
approximate scale invariance. The simplest way to define scale invariance precisely
is this: imagine we had a database of 64 × 64 images of the world and that this
could be modeled by a probability distribution p64(I) in the Euclidean space R4096

of all such images. Then we can form marginal 32 × 32 images in two different
ways: we either extract the central 32 × 32 set of pixels from the big image I or
we cover the whole 64 × 64 image by 1024 2 × 2 blocks of pixels and average each
such block to get a 32 × 32 image (i.e. we ‘blow down’ I in the crudest way). The
assertion that images are samples from a scale invariant distribution is that the
two resulting marginal distributions on 32 × 32 images are the same. This should
happen for images of any size and we should also assume that the distribution is
stationary, i.e. translating an image gives an equally probable image. The property
is illustrated in Figure 1.2.

It is quite remarkable that, to my knowledge, no test of this hypothesis on
reasonably large databases has contradicted it. Many histograms of filter responses
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Figure 1.2 Scale invariance defined as a ‘fixed point under block renormalization.
The top is random 2n × 2N image which produces the two N × N images on the
bottom, one by extracting a subimage, the other by 2 × 2 block averaging. These
two should have the same marginal distributions. (Figure from A. Lee.)

on successively blown down images have been made; order statistics have been
looked at; and some topological properties derived from level curves have been
studied (Huang and Mumford, 1999; Huang, 2000; Geman and Koloydenko, 1999;
Gousseau, 2000). All have shown approximate scale invariance. There seem to
be 2 simple facts about the world which combine to make this scale invariance
approximately true. The first is that images of the world are taken from random
distances: you may photograph your spouse’s face from one inch away or from
100 meters away or anything in between. On your retina, except for perspective
distortions, his or her image is scaled up or down as you move closer or farther
away. The second is that objects tend to have surfaces on which smaller objects
cluster: your body has limbs which have digits which have hairs on them, your office
has furniture which has books and papers which have writing (a limiting case of
very flat objects on its surface) on them, etc. Thus a blow up of a photograph shows
roughly not only the same number of salient objects but they occur with roughly
the same contrast3.

The simplest consequence of scale invariance is the law for the decay of power at

3. It is the second idea that helps to explain why aerial photographs also show approximate
scale invariance.
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high frequencies in the Fourier transform of images (or better, the discrete cosine
transform to minimize edge effects). It says that the expected power as a function
of frequency should drop off like:power law

EI
(
|Î(ξ, η)|2

)
≈ C/(ξ2 + η2) = C/f2,

where f =
√
ξ2 + η2 is the spatial frequency. This power law was discovered in the

1950’s. In the image domain, it is equivalent to saying that the auto-correlation of
the image is approximated by a constant minus log of the distance:

EI

(∑

x,y

(I(x, y) − Ī).(I(x + a, y + b) − Ī)

)
≈ C − log(

√
a2 + b2).

Note that the models have both infra-red4 and ultra-violet divergences: the total
power diverges for both f → 0 and ∞ and the auto-correlation goes to ±∞ as
a, b→ 0 and ∞. Many experiments have been made testing this law over moderate
ranges of frequencies and I believe the conclusion to draw is this: for small databases
of images, especially databases of special sorts of scenes such as forest scenes or city
scenes, different powers are found to fit best. These range from 1/f3 to 1/f but
with both a high concentration near 1/f2 and a surprisingly large variance5 (Huang,
2000; Frenkel et al., 2004). But for large databases, the rule seems to hold.

Another striking consequence of the approximate scale-invariance is that images,
if they have infinitely high resolution, are not functions at all but must be considered
‘generalized functions’ (distributions in the sense of Schwartz). This means that as
their resolution increases, natural images do not have definite limiting numerical
values I(x, y) at almost all points x, y in the image plane. I think of this as the
‘mites on your eyelashes’ theorem. Biologists tell us that such mites exist and if
you had superman’s x-ray vision, you not only could see them but by the laws
of reflectance, they would have high contrast, just like macroscopic objects. This
mathematical implication is proven in (Gidas and Mumford, 2001).

This conclusion is quite controversial: others have proposed other function spaces
as the natural home for random images. An early model for images (Mumford and
Shah, 1989) proposed that observed images were naturally a sum:

I(x, y) = u(x, y) + v(x, y),

where u was a piecewise smooth ‘cartoon’, representing the important content of
the image, and v was some L2 noise. This led to the idea that the natural function
space for images, after the removal of noise, was the space of functions of bounded
variation, i.e.

∫
||∇I||dxdy < ∞. However, this approach lumped texture in with

4. The infra-red divergence is readily solved by considering images mod constants. If the
pixel values are log of the photon energy, this constant is an irrelevant gain factor.
5. Some have found an especially large concentration near 1/f1.8 or 1/f1.9, especially for
forest scenes (Ruderman and Bialek, 1994).
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noise and results in functions u from which all texture and fine detail has been
removed. More recent models, therefore, have proposed that:

I(x, y) = u(x, y) + v(x, y) + w(x, y),

where u is the cartoon, v is the true texture and w is the noise. The idea was put
forward by DeVore and Lucier (DeVore and Lucier, 1994) that the true image u+v
belongs to a suitable Besov space, spaces of functions f(x, y) for which bounds
are put on the Lp norm of f(x+ h, y + k) − f(x, y) for (h, k) small. More recently,
Carasso has simplified their approach (Carasso, 2004) and hypothesizes that images
I, after removal of ‘noise’ should satisfy:

∫
|I(x+ h, y + k) − I(x, y)|dxdy < C(h2 + k2)α/2,

for some α as (h, k) → 0.
However, a decade ago, Rosenfeld argued with me that most of what people

discard as ‘noise’ is nothing but objects too small to be fully resolved by the
resolution of the camera and thus blurred beyond recognition or even aliased. I think
of this as clutter. The real world is made up of objects plus their parts and surface
markings of all sizes and any camera resolves only so many of these. There is an
ideal image of infinite resolution but any camera must use sensors with a positive
point spread function. The theorem above says that this ideal image, because it
carries all this detail, cannot even be a function. For example, it has more and
more high frequency content as the sensors are refined and its total energy diverges
in the limit6, hence it cannot be in L2.

In Figure 1.3, we illustrate that there is no clear dividing line between objects,
texture and noise: depending on the scale at which you view and digitize the ideal
image, the same ‘thing’ may appear as an object, as part of a texture or just a tiny
bit of noise. This continuum has been analyzed beautifully recently by (Wu and
Zhu, 2004).

Is there is a simple stochastic model for images which incorporates both high
kurtosis and scale-invariance? There is a unique scale-invariant Gaussian model,
namely colored white noise whose expected power spectrum conforms to the 1/f2

law. But this has kurtosis equal to 3. The simplest model with both propertiesrandom wavelet
model seems to be that proposed and studied by Gidas and me (Gidas and Mumford,

2001) which we call the random wavelet model. In this model, a random image is a
countable sum:

I(x, y) =
∑

α

ψα(erαx− xα, e
rαy − yα).

Here (rα, xα, yα) is a uniform Poisson process in 3-space and ψα are samples from

6. Scale invariance implies that its expected power at spatial frequency (ξ, η) is a constant
times 1/(ξ2 + η2) and integrating this over (ξ, η) gives ∞.
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Figure 1.3 This photo is intentionally upside-down, so you can look at it more
abstractly. The left photo has a resolution of about 500 × 500 pixels and the right
photo is the yellow 40 × 40 window shown on the left. Note (a) how the distinct
shapes in the road made by the large wet/dry spots gradually merge into dirt texture
and (b) the way on the right the bush is pure noise. If the bush had moved relative
to the pixels, the pattern would be totally different. There is no clear dividing line
between distinct objects, texture and noise. Even worse, some road patches which
ought to be texture are larger than salient objects like the dog.

the auxiliary ‘Levy’ process, a distribution on the space of scale and position
normalized elementary image constituents, which one may call mother wavelets
or textons. These expansions converge almost surely in all the Hilbert-Sobolev
spaces H−ε. Each component ψα represents an elementary consitutent of the image.
Typical choices for the ψ’s would be Gabor patches, edgelets or curvelets or more
complex shapes such as ribbons or simple shapes with corners. We will discuss these
in Section 1.2.4 and we will return to the random wavelet model in Section 1.3.3.

1.2.3 Occlusion and the ‘dead leaves’ model

There is, however, a third basic aspect of image statistics which we have so far not
considered: occlusion. Images are 2-dimensional projections of the 3-dimensional
world and objects get in front of each other. This means that it is a mathematical
simplification to imagine images as sums of elementary constituents. In reality,
objects are ordered by distance from the lens and they should be combined by
the non-linear operation in which nearer surface patches overwrite distant ones.
Statistically, this manifests itself in a strongly non-Markovian property of images:
suppose an object with a certain color and texture is occluded by a nearer object.
Then, on the far side of the nearer object, the more distant object may reappear,
hence its color and texture have a larger probability of occurring than in a Markov
model.

This process of image construction was studied by the French school of Math-
eron and Serra based at the École des Mines (Serra, 1983 and 1988). Their
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Figure 1.4 Synthetic images illustrating the generic image models from the text.
On the left, a sample ‘dead leaves model’ using disks as primitives; on the right, a
‘random wavelet model’ whose primitive are short ribbons.

‘dead leaves model’ is similar to the above random wavelet expansion except
that occlusion is used. We imagine that the constituents of the image are tuples
(rα, xα, yα, dα, Dα, ψα) where rα, xα and yα are as before, but now dα is the dis-
tance from the lens to the αth image patch and ψα is a function only on the set of
(x, y) ∈ Dα. We make no a priori condition on the density of the Poisson process
from which (rα, xα, yα, dα) is sampled. The image is then given by:

I(x, y) = ψα(x,y)(erα(x,y)x− xα(x,y), e
rα(x,y)y − yα(x,y)) where

α(x, y) = argmin{dα
∣∣(x, y) ∈ Dα}

This model has been analyzed by A. Lee, J. Huang and myself (Lee et al., 2001)
but has more serious infrared and ultraviolet catastrophes than the additive one.
One problem is that nearby small objects cause the world to be enveloped in a sort
of fog occluding everything in the distance. Another is the probability that one big
nearby object occludes everything. In any case, with some cut-offs, Lee’s models are
approximately scale-invariant and seem to reproduce all the standard elementary
image statistics better than any other that I know of, e.g. two-point co-occurrence
statistics as well as joint wavelet statistics.

I believe a deeper analysis of this category of models entails modeling directly,
not the objects in 2D projection, but their statistics in 3D. What is evident then is
that objects are not scattered in 3-space following a Poisson process, but rather are
agglutinative: smaller objects collect on or near the surface of bigger objects (e.g.
houses and trees on the earth, limbs and clothes on people, buttons and collars
on clothes, etc.). The simplest mathematical model for this would be a random
branching process in which objects had ‘children’ which were the smaller objects
clustering on its surface. We will discuss a 2D version of this in Section 1.3.3.
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1.2.4 The phonemes of images

The final component of this direct attack on image statistics is the investigation of
its elementary constituents, the ψ above. In analogy with speech, one may call these
constituents phonemes (or phones). The original proposals for such building blocks
were given by Julesz and Marr. Julesz was interested in what made two textures
distinguishable or indistinguishable. He proposed that one should break texturestexton
locally into textons ((Julesz, 1981) and (Resnikoff, 1989), Chap. 6) and, supported
by his psychophysical studies, he proposed that the basic textons were elongated
blobs and their endpoints (‘terminators’). Marr (Marr, 1982), motivated by the
experiments of Hubel and Wiesel on the responses of cat visual cortex neurons,
proposed that one should extract from an image its ‘primal sketch’, consisting of
edges, bars and blobs. Linking these proposals with raw image statistics, Olshausen
and Fields (Olshausen and Field, 1996) showed that simple learning rules seeking
a sparse coding of the image, when exposed to small patches from natural images,
did indeed develop responses sensitive to edges, bars and blobs. Another school of
researchers have taken the elegant mathematical theory of wavelets and sought to
find those wavelets which enabled best image compression. This has been pursued
especially by Mallat (Mallat, 1999), Simoncelli (Simoncelli, 1999) and Donoho and
their collaborators (Candes and Donoho, 2005).

Having large natural image databases and powerful computers, we can ask now for
a direct extraction of these or other image constituents from a statistical analysis
of the image themselves. Instead of taking psychophysical, neurophysiological or
mathematical results as a basis, what happens if we let images speak for themselves.
Three groups have done this: Geman-Koloydenko (Geman and Koloydenko, 1999),
Lee-Pedersen-Mumford (Lee et al., 2003a) and Malik-Shi (Malik et al., 1999).

The approach of Geman and Koloydenko was based on analyzing all 3× 3 image
patches using order statistics. The same image patches were studied by Lee and
myself using their real number values. A very similar study by Lee and Pedersen
(Pedersen and Lee, 2002) replaced the 9 pixel values by 9 Gaussian derivative filter
responses. In all three cases, a large proportion of such image patches were found to
be either low contrast or high contrast cut across by a single edge. This, of course,
is not a surprise: but it quantifies the significance of edges in image structure. For
example, in the study by Lee, Pedersen and myself, we took the image patches with
the top 20% quantile for contrast, then subtracted their mean and divided by their
standard deviation, obtaining data points on a 7-dimensional sphere. In this sphere,
there is a surface representing the responses to image patches produced by imaging
straight edges with various orientations and offsets. Close analysis shows that the
data is highly concentrated near this surface, with asymptotic infinite density along
the surface itself.

Malik and Shi take small patches and analyze these by a filter bank of 36 wavelet
filters. They then apply k-means clustering to find high density points in this point
cloud. Again the centers of these clusters resemble the traditional textons and
primitives. In addition, they can adapt the set of textons they derive to individual
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Figure 2.49: k-means centers of 8X8 images patches. The number is the frequency that

images patches are closest to the center.

where C is the set of all the 128 centers, and

angle(v; C) = minc2C(angle(v; c))

We can calculate the percentage of samples fall in Sr for di�erent r
0
s. Also, we can

calculate the volume of Sr numerically. The lower curve of �gure 2.51 is the plot of the

percentage of samples fall in Sr against
vol(Sr)

vol(S62)
. We can see from the curve that about 90%

of sample points fall in a region of 10% of the total volume.

From our experience with low dimensional natural scene statistics(e.g. 3D joint statistics

of Haar coeÆcients), we know that the density function may have di�erent rates of change

81

(a) (b)

(c)

Figure 4. (a) Penguin image. (b) Textons found via � -
means with� �����

, sorted in decreasing order by norm.
(c) Mapping of pixels to the texton channels. Among the
textons we see edge elementsof varying orientationand
contrast along with elements of the stochastic texture in the
rocks.

the textons correspond to translated versions of dark spots2.
Also included are a number of oriented edge elements of
low contrast and two textons representing nearly uniform
brightness. The pixel-to-texton mapping is shown in Fig-
ure 3(c). Each subimage shows the pixels in the image that
are mappedto thecorrespondingtexton in Figure3(b). We
refer to this collection of discrete point sets as the texton
channels. Sinceeachpixel ismappedto exactlyonetexton,
the texton channels constitute a partition of the image.

Textons and texton channels are also shown for the pen-
guin image in Figure 4. Notice in the two examples how
much the texton set can change from one image to the
next. The spatial characteristics of both the deterministic

2It is straightforward to develop a method for merging translated ver-
sions of the same basic texton, though we have not found it necessary.
Merging in this manner decreases the number of channels needed but ne-
cessitates the use of phase-shift information.

polka dot texture and the stochasticrocks texture are cap-
tured across several texton channels. In general, the texture
boundaries emerge as point density changes across the dif-
ferenttextonchannels.In somecases,a textonchannelcon-
tainsactivity insidea particulartexturedregionandnowhere
else. By comparison, vectors of filter outputs generically re-
spond with some value at every pixel – a considerably less
clean alternative.

3 Texton Channel Analysis

As discussed in the preceding section, the mapping from
pixel to texton channel provides us with a number of dis-
crete point sets where before we had continuous-valued fil-
ter vectors. Such a representation is well suited to the ap-
plication of techniques from computational geometry and
point process statistics. With these tools, one can approach
questions such as, “what is the neighborhood of a texture
element?” and “how similar are two pixels inside a textured
region?”

3.1 Defining Local Scale Selection

The texton channel representation provides us a natural
way to definetexture scale. If the texture is composedof
texels, we might want to define a notion of texel neighbors
and consider the mean distance between them to be a mea-
sure of scale. Of course,many texturesare stochasticand
detecting texels reliably may be hard even for regular tex-
tures.

With textonswe have a “soft” way to define neighbors.
For a given pixel in a texton channel,first considerit as
a “thickened point”— a disk centered at it. The idea is
that while textons are being associated with pixels, since
they correspond to assemblies of filter outputs, it is better
to think of them as corresponding to a small image disk de-
fined by the scale used in the Gaussian derivative filters. Re-
call Koenderink’s aphorism about a point in image analysis
being a Gaussian blob of small� !

Now consider the Delaunay neighbors of all the pixels in
the thickened point of a pixel

�
which lie closer than some

outer scale.3. The statistics of Delaunay edge lengths pro-
vides a natural measure of scale. In passing, we note that
this neighborhood tends to be in the same image region as
pixel

�
, since all the nodes in it belong to the same texton

channel and are proximal.
In Figure 5a, the Delaunay triangulation of a zoomed-in

portion of one of the texton channels in the rocky region of
Figure 4 is shown atop a brightened version of the image.
Here the nodes represent points that are similar in the image
while the edges provide proximity information.

3This is set to 13 pixels in our experiments.

Figure 1.5 Textons derived by k-means clustering applied to 8× 8 image patches.
On the top, Huang’s results for image patches from van Hateren’s database; on
the bottom, Malik et al’s results using single images and filter banks. Note the
occasional terminators in Huang’s results, as Julesz predicted.
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images, obtaining a powerful tool for representing a single image.
A definitive analysis of images deriving directly the correct vocabulary of basic

image constituents has not been made but the outlines of the answer are now clear.

1.3 Grouping of image structures

In the analysis of signals of any kind, the most basic ‘hidden variables’ are the
labels for parts of the signal which should be grouped together, either because they
are homogeneous parts in some sense or because the components of this part occur
together with high frequency. This grouping process in speech leads to words and
in language leads to the elements of grammar — phrases, clauses and sentences.
On the most basic statistical level, it seeks to group parts of the signal whose
probability of occurring together is significantly greater than it would be if they
were independent: see Section 1.3.3 for this formalism. The factors causing grouping
were the central object of study for the so-called ‘Gestalt’ School of Psychology. This
school flourished in Germany and later in Italy in the first half of the 20th century
and included M. Wertheimer, K. Koffka, W. Metzger, E. Brunswik, G. Kanizsa and
many others. Their catalog of features which promoted grouping included:

color and proximity,

alignment, parallelism and symmetry,

closedness and convexity

Kanizsa was well aware of the analogy with linguistic grammar, titling his last book
Grammatica del Vedere (Kanizsa, 1980). But they had no quantitative measures
for the strength of these grouping principles, as they well knew. This is similar to
the situation for traditional theories of human language grammar — a good story
to explain what words are to be grouped together in phrases but no numbers. The
challenge we now face is to create theories of stochastic grammars which can express
why one grouping is chosen is chosen in preference to another. It is a striking fact
that, faced either with a sentence or a scene of the world, human observers choose
the same groupings with great consistency. This is in contrast with computers
which, given only the grouping rules, find thousands of strange parses of both
sentences and images.

1.3.1 The most basic grouping: Segmentation and texture

The simplest grouping rules are those of similar color (or brightness) and proximity.grouping
These two rules have been used to attack the segmentation problem. The most
naive but direct approach to image segmentation is based on the assumption that
images break up into regions on which their intensity values are relatively constant
and across whose boundaries it changes discontinuously. A mathematical version
of this approach, which gives an explicit measure for comparing different proposed
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segmentations, is the energy functional proposed by Shah and myself (Mumford
and Shah, 1989). It is based on a model I = u+ v where u is a simplified cartoon
of the image and v is ‘noise’:

E(I, u,Γ) = C1

∫

D

(I − u)2 + C2

∫

D−Γ

‖∇u‖2 + C3 · length(Γ) where

D = domain of I

Γ = boundaries of regions which are grouped together and

Ci = parameters to be learnt.

In this model, pixels inD−Γ have been grouped together by stringing together pairs
of nearby similarly colored pixels. Different segmentations correspond to choosing
different u and Γ and the one with lower energy is preferred. Using the Gibbs
statistical mechanics approach, this energy can be thought of as a probability:
heuristically, we set p(I, u,Γ) = e−E(I,u,Γ)/T/Z. where T and Z are constants.
Taking this point of view, the first term in E is equivalent to assuming v = I −u is
a sample from white noise. Moreover, if Γ is fixed, then the second term in E makes
u a sample from the scale-invariant Gaussian distribution on functions, suitably
adapted to the smaller domain D − Γ. It is hard to interpret the third term even
heuristically, although Brownian motion ((x(t), y(t)) is heuristically a sample from
the prior e−

∫
(x′(t)2+y′(t)2)dt, which, if we adopt arc length parametrization, becomes

e−length(Γ). If we stay in the discrete pixel setting, the Gibbs model corresponding
to E makes good mathematical sense; it is a variant of the Ising model of statistical
mechanics (Geman and Geman, 1984; Blake and Zisserman, 1987).

The most obvious weakness in this model is its failure to group similarly tex-
tured regions together. Textural segmentation is an example of the hierarchical
application of gestalt rules: first the individual textons are grouped by having sim-
ilar colors, orientations, lengths and aspect ratios. Then these groupings of textons
are further grouped into extended textured regions with homogeneous or slowly
varying ‘texture’. Ad hoc adaptations of the above energy approach to textural
grouping (Geman and Graffigne, 1986; Lee et al., 1992; Hofmann et al., 1998) have
been based on choosing some filter bank the similarity of whose responses are taken
as a surrogate for the first low-level texton grouping. One of the problems of this
approach is that textures are often not characterized so much by an average of all
filter responses as by the very large response of one particular filter, especially by
the outliers occurring when this filter precisely matches a texton (Zhu et al., 1997).
A careful and very illuminating statistical analysis of the importance of color, tex-
tural and edge features on grouping, based on human segmented images, was given
by Malik’s group (Foulkes et al., 2003).

1.3.2 Extended lines and occlusion

The most striking demonstrations of gestalt laws of grouping come from occlusion
phenomena, when edges disappear behind an object and reappear. A typical
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Figure 1.6 Two examples of gestalt grouping laws: on the left, the black bars are
continued under the white blob to form the letter ‘T’, on the right, the semi-circles
are continued underneath a foreground ‘pear’ which must completed by contours
with zero contrast.

example is shown in Figure 1.6. The most famous example is the ‘Kanizsa triangle’
where, to further complicate matters, the foreground triangle has the same color
as the background with only black circles of intermediate depth being visible. The
grouping laws lead one to infer the presence of the occluding triangle and the
completion of the three partially occluded black circles. An amusing variant, the
‘Kanizsa pear’, is shown in the same figure.

These effects are not merely psychophysical curiosities. Virtually every image
of the natural world has major edges which are occluded one or more times by
foreground objects. Correctly grouping these edges goes a long way to finding the
correct parse of an image.

A good deal of modeling has gone into the grouping of disconnected edges into
extended edges and the evaluation of competing groupings by energy values or
probabilities. Pioneering work was done by Elder and Zucker (Parent and Zucker,
1989) and Shashua and Ullman (Shashua and Ullman, 1988). Nitzberg, Shiota and I
proposed a model for this (Nitzberg et al., 1992) which was a small extension of the
Mumford-Shah model. The new energy involves explicitly the overlapping regions
Rα in the image given by the 3D objects in the scene, both the visible and the
occluded parts of these objects. Therefore, finding its minimum involves inferring
the occluded parts of the visible objects as well as the boundaries of their visible
parts. (These are literally ‘hidden variables’.) Moreover, we need the depth order
of the objects, which are nearer, which further away. The cartoon u of the image is
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now assumed piecewise constant with value uα on the region Rα. Then:

E(I, {uα}, {Rα}) =
∑

α

C1

∫

R′
α

(I − uα)2 +
∫

∂Rα

(
C2κ

2
∂Rα

+ C3

)
ds

R′
α =


Rα −

⋃

nearer Rβ

Rα ∩Rβ


 = visible part of Rα

κ∂Rα = curvature of ∂Rα.

This energy allows one to quantify the application of gestalt rules for inferring
occluded objects and predicts correctly, for example, the objects present in the
Kanizsa triangle. The minima of this E will infer specific types of hidden contours,
namely contours which come from the purely geometric variational problem of
minimizing a sum of squared curvature and arc length along an unknown curve.
This variational problem was first formulated by Euler, who called the resulting
curves elastica.

To make a stochastic model out of this, we need a stochastic model for the
edges occurring in natural images. There are two parts to this: one is modeling the
local nature of edges in images and the other is modeling the way they group into
extended curves.

Several very simple ideas for modeling curves locally, based on Brownian motion,
were proposed in (Mumford, 1992). Brownian paths themselves are too jagged to be
suitable, but one can assume the curves are C1 and that their orientation θ(s), as a
function of arc length, is Brownian. Geometrically, this is like saying their curvature
is white noise. Another alternative is to take 2D projections of 3D curves whose
direction of motion, given by a map from arc length to points on the unit sphere,
is Brownian. Such curves have more corners and cusps, where the 3D path heads
towards or away from the camera. Yet another option is generate parameterized
curves whose velocity (x′(t), y′(t)) is given by two Ornstein-Uhlenbeck processes
(Brownian functions with a restoring force pulling them to 0). These paths have
nearly straight segments when the velocity happens to get large.

A key probability distribution in any such theory is p(x, y, θ), the probability
density that if an image contour passes through (0, 0) with horizontal tangent, then
this contour will also pass through (x, y) with orientation θ. This function has been
estimated from image databases by (Geisler et al., 2001), but I don’t know of any
comparison of their results with mathematical models.

Subsequently, Zhu (Zhu, 1999) and Ren and Malik (Ren and Malik, 2002) directly
analyzed edges and their curvature in hand segmented images. Zhu found a high
kurtosis empirical distribution much like filter responses: a peak at 0 showing the
prevalence of straight edges and large tails indicating the prevalence of corners.
He built a stochastic model for polygonal approximations to these curves using an
exponential model of the form:

p(Γ) ∝ e−
∫
Γ ψ1(κ(s))+ψ2(κ

′(s))ds,



Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/02/27 12:16

1.3 Grouping of image structures 19

where κ is the curvature of Γ and the ψi are unknown functions chosen so that
the model yields the same distribution of κ, κ′ as that found in the data. Finding
continuum limits of his models under weak convergence is an unsolved problem.
Ren and Malik’s models go beyond the previous strictly local ones. They are kth-
order Markov models in which the orientation θk+1 of a curve at a sample point
Pk+1 is a sample from a joint probability distribution of the orientations θαk of both
the curve and smoothed versions of itself at other scales α, all at the previous point
Pk.

A completely different issue is finding probabilities that 2 edges should be joined,
e.g. if Γ1,Γ2 are two curves ending at points P1, P2, how likely is it that in the real
world there is a curve Γh joining P1 and P2 and creating a single curve Γ1∪Γh∪Γ2.
This link might be hidden in the image because of either occlusion, noise or low
contrast (anyone with experience with real images will not be surprised at how often
this happens). Jacobs, Williams, Geiger and others have developed algorithms of
this sort based on elastica and related ideas (Williams and Jacobs, 1997; Geiger
et al., 1998). Elder (Elder and Goldberg, 2002) and Geisler (Geisler et al., 2001)
have carried out psychophysical experiments to determine the effects of proximity,
orientation difference and edge contrast on human judgements of edge completions.

One of the subtle points here (as Ren and Malik make explicit) is that this
probability does not depend only on the endpoints Pi and the tangent lines to the
Γi at these points. So, for instance, if Γ1 is straight for a certain distance before its
endpoint P1, then the longer this straight segment is, the more likely it is that any
continuation it has will also be straight. An elegant analysis of the situation purely
for straight edges has been given by Desolneux, Moisan and Morel (Desolneux et al.,
2003). It is based on what they call ‘maximally meaningful alignments’, which
come from computing the probabilities of accidental alignments and no other prior
assumptions. The most compelling analysis of the problem, to my mind, is that in
the thesis of Jonas August (August, 2001). He starts with a prior on a countable set
of true curves, assumed to be part of the image. Then he assumes a noisy version
of this is observed and seeks the maximally probable reconstruction of the whole
set of true curves. An example of his algorithms is shown in Figure 1.7. Another
algorithm for global completion of all image contours has been given recently by
Malik’s group (Ren et al., 2005).

1.3.3 Mathematical formalisms for visual grammars

The ‘higher level’ gestalt rules for grouping based on parallelism, symmetry, closed-
ness and convexity are even harder to make precise. In this subsection, I want to
describe a general approach to these questions.

So far, we have described grammars loosely as recursive groupings of parts of a
signal, where the signal can be a string of phonemes or an image of pixels. The
mathematical structure which these groupings define is a tree: each subset of the
domain of the image which is grouped together defines a node in this tree and,
whenever one such group contains another, we join the nodes by an edge. In the



Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/02/27 12:16

20 Empirical Statistics and Stochastic Models for Visual Signals

Figure 1.7 An experiment finding the prostate in a MRI scan from August
(August, 2002). On the left, the raw scan; in the middle, edge filter responses;
on the right, the computed posterior of August’s curve indicator random field, (which
actually lives in (x, y, θ) space, hence the boundary of the prostate is actually
separated from the background noise).

case of sentences in human languages, this tree is called the parse tree. In the case
of images, it is similar to the ‘image pyramid’ made up of the pixels of the image
plus successively ‘blown-down’ images 2n times smaller. However, unlike the image
pyramid, its nodes only stand for natural groupings, so its structure is adaptively
determined by the image itself.

To go deeper into the formalism of grammar, the next step is to label these
groupings. In language, typical labels are ‘noun phrase’, ‘prepositional clause’ , etc.
In images, labels might be ‘edgelet’, ‘extended edge’, ribbon’, ‘T-junction’ or even
‘the letter A’. Then the grouping laws are usually formulated as productions:

noun phrase −→ determiner + noun

extended edge −→ edgelet + extended edge

where the group is on the left and its constituents are shown on the right. The
second rule creates a long edge by adding a small piece, an edgelet, to one end.
But now the issue of agreement surfaces: one can say ‘a book’ and ‘some books’ but
not ‘a books’ or ‘some book’. The determiner and the noun must agree in number.
Likewise, to group an edge with a new edgelet requires that the edgelet connect
properly to the edge: where one ends, the other must begin. So we need to endow
our labeled groupings with a list of attributes which must agree for the grouping
to be possible. So long as we can do this, we have created a context-free grammar.
Context-freeness means that the possibility of the larger grouping depends only on
the labels and attributes of the constituents and nothing else. An exanple of the
parse of the letter ‘A’ is shown in Figure 1.8.

We make the above into a probability model in a top-down generative fashion by
assigning to probabilities to each production. For any given label and attributes, the
sum (or integral) of the probabilities of all possible productions it can yield should
be 1. This is called a PCFG (probabilistic context-free grammar) by linguists. It isprobabilistic

context-free
grammar

the same as what probabilists call a random branching tree (except that grammars
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Figure 1.8 The parse tree for the letter ‘A’ which labels the top node; the lower
nodes ight be labelled ‘edge’ and ‘corner’. Note that in grouping the 2 sides, the
edge has an attribute giving its length and approximate equality of the lengths of
the sides must hold; and in the final grouping, the bar of the ‘A’ must meet the two
sides in approximately equal angles. These are probabilistic constraints involving
specific attributes of the constituents, which must be included in B`.

are usually assumed to almost surely yield finite parse trees).
A more general formalism for defining random trees with random data attached

to their nodes has been given by Artur Fridman (Fridman, 2003). He calls his
models ‘Mixed Markov Models’ because some of the nodes carry address variables
whose value is the index of another node. Thus in each sample from the model, this
node adds a new edge to the graph. His models include PCFG’s as a special case.

Random trees can fit be fit naturally into the random wavelet model (or the dead
leaves model) described above. To see this, we consider each 4-tuple {xα, yα, rα, ψα}
in the model not merely as generating one elementary constituent of the image,
but as the root of a whole random branching tree. The child nodes it generates
should add parts to a now compound object expanding the original simple image
constituent ψα. For example the root might be an elongated blob representing the
trunk of a person and the tree it generates would add the limbs, clothes, face, hands,
etc. to the person. Or the root might be a uniform patch and the tree would add a
whole set of textons to it, making it into a textured patch. So long as the rate of
growth of the random branching tree is not too high, we still get a scale-invariant
model.

Two groups have implemented image analysis programs based on computing such
trees. One is the multi-scale segmentation algorithm of Galun, Sharon, Basri and
Brandt (Galun et al., 2003) which produces very impressive segmentation results.
The method follows Brandt’s adaptive tree-growing algorithm called ‘algebraic
multi-grid’. In their code, texture and its component textons play the same role
as objects and their component parts: each component is identified at its natural
scale and grouped further at a higher level in a similar way. Their code is fully
scale-invariant except at the lowest pixel level. It would be very interesting to fit
their scheme into the Bayesian framework.

The other algorithm is an integrated bottom-up and top-down image parsing
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Figure 1.9 A simplification of the parse tree inferred by the segmentation algo-
rithm of Galun, Sharon, Basri and Brandt. The image is at the bottom and part of
its tree is shown above it. On the right are shown some of the regions in the image
grouped by successive levels of the algorithm.

program from Zhu’s lab (Tu et al., 2005). The output of their code is a tree with
semantically labelled objects at the top, followed by parts and texture patches in
the middle with the pixels at the bottom. This program is based on a full stochastic
model.

A basic problem with this formalism is that it is not sufficiently expressive:
the grammars of nature appear to be context-sensitive. This is often illustrated
by contrasting languages that have sentences of the form abcddcba, which can be
generated recursively by a small set of productions as in

s → asa → absba → abcscba→ abcddcba,

versus languages which have sentences of the form abcdabcd, with two complex
repeating structures, which cannot be generated by simple productions. Obviously,
images with two identical faces are analogs of this last sentence. Establishing
symmetry requires you to reopen the grouped package and examine everything
in it to see if it is repeated! Unless you imagine each label given a huge number of
attributes, this cannot be done in a context-free setting.

In general, 2-dimensional geometry creates complex interactions between group-
ings and the strength of higher order groupings seem to always depend on multiple
aspects of the each piece. Take the example of a square. Ingredients of the square
are a) the two groupings of parallel edges, each made up of a pair of parallel sides of
equal length and b) the grouping of edgelets adjacent to each vertex into a ‘right-
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angle’ group. The point is is that the pixels involved in these smaller groupings
partially intersect. In PCFG’s, each group should expand to disjoint sets of prim-
itives or to one set contained in another. The case of the square is best described
with the idea of graph unification, in which a grouping rule unifies parts of the
graph of parts under each consitutent.

S. Geman and his collaborators (Bienenstock et al., 1998; Geman et al., 2002)
have proposed a general framework for developing such probabilistic context-
sensitive grammars. He proposes that for grouping rule `, in which groups
y1, y2, · · · , yk are to be unified into a larger group x, there is a binding func-
tion B`(y1, y2, · · · , yk) which singles out those attributes of the constituents which
affect the probability of making the k-tuple of y’s into an x. For example, to put 2
edgelets together, we need to ask if the endpoint of the first is near the beginning
of the second and whether their directions are close. The closer are these points
and directions, the more likely it is that the two edgelets should be grouped. The
basic hypothesis is that the likelihood ratio p(x, y1, · · · , yk)/

∏
i p(yi) depends only

on B`(y1, · · · , yk). In their theory, they analyze how to compute this function from
data.

This general framework needs to be investigated in many examples to further
constrain it. An interesting example is the recent work of Ullman and collaborators
(Ullman et al., 2002) on face recognition, built up through the recognition of parts:
this would seem to fit into this framework. But, overall, the absence of mathematical
theories which incorporate all the gestalt rules at once seems to me the biggest gap
in our understanding of images.

1.4 Probability measures on the space of shapes

The most characteristic new pattern found in visual signals, but not in 1-
dimensional signals, are shapes, 2-dimensional regions in the domain of the image.
In auditory signals, one has intervals on which the sound has a particular spec-
trum, for instance, corresponding to some specific type of source (for phonemes,
some specific configuration of the mouth, lips and tongue). But an interval is noth-
ing but a beginning point and an endpoint. In contrast, a subset of a 2-dimensional
region is much more interesting and conveys information by itself. Thus people
often recognize objects by their shape alone and have a rich vocabulary of different
categories of shapes often based on prototypes (‘heart’ shaped, ‘egg’ shaped, ‘star’
shaped, etc.). In creating stochastic models for images, we must face the issue of
constructing probability measures on the space of all possible shapes. An even
more basic problem is to construct metrics on the space of shapes, measures for the
dissimilarity of 2 shapes. It is striking how people find it quite natural to be asked
if some new object has a shape similar to some old object or category of objects.
They act as though they carried a clearcut psychophysical metric in their heads,
although, when tested, their similarity judgements show a huge amount of context
sensitivity.
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1.4.1 The space of shapes and some basic metrics on it

What do we mean by the space of shapes? The idea is simply to define this space
as the set of 2-dimensional shapes, where a shape is taken to mean an open7

subset S ⊂ R2 with smooth8 boundary9. We let S denote this set of shapes. The
mathematician’s approach is to ask: what structure can we give to S to endow it
with a geometry? In particular, we want to define a) local coordinates on S, somanifold
that it is a manifold, b) a metric on S and c) probability measures on S. Having
probability measures will allow us to put shapes into our theory as hidden variables
and extend the Bayesian inference machinery to include inferring shape variables
from images.
S itself is not a vector space: one cannot add and subtract 2 shapes in a way

satisfying the usual laws of vectors. Put another way, there is no obvious way to put
global coordinates on S, that is to create a bijection between points of S and points
in some vector space. One can, e.g. describe shapes by their Fourier coefficients,
but the Fourier coefficients coming from shapes will be very special sequences of
numbers. What we can do, however, is put a local linear structure on the space of
shapes. This is illustrated in Figure 1.10. Starting from one shape S, we erect normal
lines at each point of the boundary Γ of S. Then nearby shapes will have boundaries
which intersect each normal line in a unique point. Suppose ψ(s) ∈ R2 is arc length
parametrization of Γ. Then the unit normal vector is given by ~n(s) = ψ′⊥(s) and
each nearby curve is parameterized uniquely in the form:

ψa(s) = ψ(s) + a(s) · ~n(s), for some function a(s).

All smooth functions a(s) which are sufficiently small can be used, so we have
created a bijection between an open set of functions a, that is an open set in a
vector space, and a neighborhood of Γ ∈ S. These bijections are called charts and
on overlaps of such charts, one can convert the a’s used to describe the curves in
one chart into the functions in the other chart: this means we have a manifold. For
details, see (Michor and Mumford, 2005). Of course, the function a(s) lies in an
infinite-dimensional vector space, so S is an infinite-dimensional manifold. But that
is no deterrent to its having its own intrinsic geometry.

Being a manifold means S has a tangent space at each point S ∈ S. Thistangent space
tangent space consists in the infinitesimal deformations of S, i.e. those coming from
infinitesimal εa(s). Dropping the ε, the infinitesimal deformations may be thought
of simply as normal vector fields to Γ, that is the vector fields a(s).~n(s). We denote
this tangent space as TS,S .

How about metrics? In analysis, there are many metrics on spaces of functions

7. A set S of points is open if S contains a small disk of points around each point x ∈ S.
8. Smooth means that its is a curve that is locally a graph of a function with infinitely
many derivatives.
9. In many applications, one may want to include shapes with corners. We simplify the
discussion here and assume there are no corners.
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Figure 1.10 The manifold structure on the space of shapes is here illustrated: all
curves near the heavy one meet the normal ‘hairs’ in a unique point, hence are
described by a function, namely how far this point has been displaced normally.

and they vary in two different ways. One choice is whether you make a worst
case analysis or an average analysis of the difference of two functions — or
something in between. This means you define the difference of two functions a
and b either as the supx |a(x) − b(x)|, the integral

∫
|a(x) − b(x)|dx or as an Lp

norm, (
∫
|a(x) − b(x)|pdx)1/p (which is in between). The case p = ∞ corresponds

to the sup, and p = 1 to the average. Usually, the three important cases10 are
p = 1, 2 or ∞. The other choice is whether to include derivatives of a, b as well as
the values of a, b in the formula for the distance and, if so, up to what order k.
These distinctions carry over to shapes. The best known measures are the so-called
Hausdorff measure

d∞,0(S, T ) = max
(

sup
x∈S

inf
y∈T

‖x− y‖, sup
y∈T

inf
x∈S

‖x− y‖
)
,

for which p = ∞, k = 0 and the area metric,

d1,0(S, T ) = Area(S − S ∩ T ) ∪ Area(T − S ∩ T ),

for which p = 1, k = 0.
It is important to realize that there is no one right metric on S. Depending on the

application, different metrics are good. This is illustrated in Figure 1.11, adapted
from Kimia. The central bow-tie like shape is similar to all the shapes around it.
But different metrics bring out their dissimilarities and similarities in each case. The

10. O. Faugeras et al. Charpiat et al. (2005) however have used p-norm as for p � 1 in
order to ‘tame’ L∞ norms.
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Figure 1.11 Each of the shapes A,B,C,D and E is similar to the central shape, but
in different ways. Different metrics on the space of shape bring out these distinctions.

Hausdorff metric applied to the outsides of the shapes makes A far from the central
shape; any metric using the first derivative (i.e. the orientation of the tangent lines
to the boundary) makes B far from the central shape; a sup-type metric with the
second derivative (i.e. the curvature of the boundary) makes C far from the central
shape, as curvature becomes infinite at corners; D is far from the central shape
in the area metric; E is far in all metrics, but the challenge is to find a metric in
which it is close to the central shape. E has ‘outliers’, the spikes, but is identical to
the central shape if they can be ignored. To do this needs what are called ‘robust’
metrics of which the simplest example is L1/2 (not a true metric at all).

1.4.2 Riemannian metrics and probability measures via diffusion
Riemannian
metrics There are great mathematical advantages to using L2, so-called Riemannian met-

rics. More precisely, a Riemannian metric is given by defining a quadratic inner
product in the tangent space TS,S . In Riemannian settings, the unit balls are nice
and round and extremal problems, such as paths of shortest length, are usually
well-posed. This means we can expect to have geodesics, optimal deformations of
one shape S to a second shape T through a family St of intermediate shapes, i.e.
we can morph S to T in a most efficient way. Having geodesics, we can study the
geometry of S, for instance whether its geodesics diverge or converge11 — which
depends on the curvature of S in the metric. But most important of all, we can
define diffusion and use this to get Brownian paths and thus probability measures
on S.

A most surprising situation arises here: there are three completely different ways
to define Riemannian metrics on S. We need to assign a norm to normal vector

11. This is a key consideration when seeking means to clusters of finite sets of shapes and
in seeking ‘principle components of such clusters.
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fields a(s)~n(s) along a simple closed plane curve Γ.
local metric

1. In ‘infinitesimal’ metric, the norm is defined as an integral along Γ. In general,
this can be any expression:

‖a‖2 =
∫

Γ

F (a(s), a′(s), a′′(s), · · · , κ(s), κ′(s), · · · )ds

involving a function F quadratic in a and the derivatives of a whose coefficients can
possibly be functions associated to Γ like the curvature and its derivatives. We call
these local metrics. We might have F = a(s)2 or F = (1 + Aκ2(s)) · a(s)2, where
A is a constant; or F = a(s)2 + Aa′(s)2, etc.. These metrics have been studied by
(Michor and Mumford, 2005; Michor and Mumford). Globally, the distance between
two shapes is then:

d(S0, S1) = inf
paths {St}

∫ 1

0

‖∂St
∂t

‖dt,

where ∂St/∂t is the normal vector field given by this path.

2. In other situations, a morph of one shape to another needs to be considered as
part of a morph of the whole plane. For this, the metric should be a quotient of adiffeomorphism
metric on the group G of diffeomorphisms of R2, with some boundary condition, e.g.
equal to the identity outside some large region. But an infinitesimal diffeomorphism
is just a vector field ~v on R2 and the induced infinitesimal deformation of Γ is given
by a(s) = (~v ·~n(s)). Let V be the vector space of all vector fields on R2, zero outside
some large region. Then this means that the norm on a is:

‖a‖2 = inf
~v∈V,(~v·~n)=a

∫

R2
F (~v,~vx, ~vy, · · · )dxdy

where we define an inner product on V using a symmetric positive definite quadratic
expression in ~v and its partial derivatives. We might have F = ‖~v‖2 or F =
‖~v‖2 +A‖~vx‖2 +A‖~vy‖2, etc. It is convenient to use integration by parts and write
all such F ’s as (L~v,~v), where L is a positive definite partial differential operator
(L = I−A4 in the second case above). These metrics have been studied by Miller,Miller’s metric
Younes and their many collaborators (Miller, 2002; Miller and Younes, 2001) and
applied extensively to the subject they call ‘computational anatomy’, that is the
analysis of medical scans by deforming them to template anatomies. Globally, the
distance between two shapes is then:

dMiller(S, T ) = inf
φ

∫ 1

0

(∫

R2
F (

∂φ

∂t
◦ φ−1)dxdy

)1/2

dt, where

φ(t), 0 ≤ t ≤ 1 is a path in G, φ(0) = I, φ(1)(S) = T

3. Finally, there is a remarkable and very special metric on S̄ = S modulo transla-
tions and scalings (i.e. one identifies any two shapes which differ by translation plus
a scaling). It is derived from complex analysis and known as the Weil-Petersen (orWeil-Petersen

metric WP) metric. Its importance is that it makes S̄ into a homogeneous metric space,
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Figure 1.12 A diffusion on the space of shapes in the Riemannian metric of Miller
et al. The shapes should be imagined on top of each other, the translation to the
right being added in order that each shape can be seen clearly. The diffusion starts
at the unit circle.

that is, it has everywhere the same geometry. There is a group of global maps of S to
itself which preserve distances in this metric and which can take any shape S to any
other shape T . This is not the case with the previous metrics, hence the WP metric
emerges as the analog of the standard Euclidean distance in finite-dimensions. The
definition is more elaborate and we do not give it here: see (Mumford and Sharon,
2004). This metric also has negative or zero curvature in all directions and hence
finite sets of shapes as well as probability measures on Ḡ should always have a well-
defined mean (minimizing the sum of squares of distances) in this metric. Finally,
this metric is closely related to the medial axis which has been frequently used for
shape classification.

The next step in each of these theories is to investigate the heat kernel, the
solution of the heat equation starting at a delta function. This important question
has not been studied yet. But diffusions in these metrics are easy to simulate. In
Figure 1.12 we show three random walks in S in one of Miller’s metrics. The analog
of Gaussian distributions are the probability measures gotten by stopping diffusion
at a specific point in time. And analogs of the scale mixtures of Gaussians discussed
above are obtained by using a so-called ‘random stopping time’, that choosing the
time to halt the diffusion randomly from another probability distribution. It seems
clear that one or more of these diffusion measures are natural general purpose priors
on the space of shapes.

1.4.3 Finite approximations and some elementary probability measures

A completely different approach is to infer probability measures directly from
data. Instead of seeking general purpose priors for stochastic models, one seeks
special purpose models for specific object recognition tasks. This has been done by
extracting from the data a finite set of landmark points, homologous points which
can be found on each sample shape. For example, in 3 dimensions, skulls have long
been compared by taking measurements of distances between classical landmark
points. In 2 dimensions, assuming these points are on the boundary of the shape,
the infinite dimensional space S is replaced by the finite dimensional space of the
polygons {P1, · · · , Pk} ∈ R2k formed by these landmarks. But, if we start from
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Figure 1.13 Six ‘animals’ that never existed: they are random samples from the
prior of S.C. Zhu trained on real animal silhouettes. The interior lines come from
his use of medial axis techniques to generate the shapes.

images, we can allow the landmark points to lie in the interior of the shape also.
This approach was introduced a long time ago to study faces. More specifically, it
was used by Cootes and Taylor (Cootes et al., 1993) and by Hallinan Hallinan et al.
(1999) to fit multi-dimensional Gaussians to the cloud of points in R2k formed from
landmark points on each of a large set of faces. Both groups then apply principle
component analysis and find the main directions for face variation.

However, it seems unlikely to me that Gaussians can give a very good fit. I
suspect rather that in geometric situations as well, one will encounter the high
kurtosis phenomenon, with geometric features often near zero but, more often than
for Gaussian variables, very large too. A first attempt to quantify this point of view
was made by Zhu Zhu (1999). He took a database of silhouettes of 4-legged animals,
computed for each landmark points and their medial axis as well as curvature.
Then he fit a general exponential model to a set of 6 scalar variables describing this
geometry. The strongest test of whether he has captured some of their essential
shape properties is to sample from the model he gets. The results are shown in
Figure 1.13. It seems to me that these models are getting much closer to the sort
of special purpose prior that is needed in object recognition programs. Whether his
models have continuum limits and of what sort is an open question.

There are really three goals for a theory of shapes adapted to the analysis of
images. The first is is to understand better the global geometry of S and which
metrics are appropriate in which vision applications. The second is to create the
best general purpose priors on this space, which can apply to arbitrary shapes. The
third is to mold special purpose priors to all types of shapes which are encountered
frequently, to express their specific variability. Some progress has been made on all
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three of these but much is left to be done.

1.5 Summary

Solving the problem of vision requires solving three subproblems: finding the right
classes of stochastic models to express accurately the variability of visual patterns
in nature, finding ways to learn the details of these models from data and finding
ways to reason rapidly using Bayesian inference on these models. This chapter has
addressed the first. Here a great deal of progress has been made but it must be said
that much remains to be done. My own belief is that good theories of groupings
are the biggest gap. Although not discussed in this article, let me add that great
progress has been made on the second and third problem with a large number
of ideas, e.g. the EM-algorithm, much faster Monte Carlo algorithms, maximum
entropy (MaxEnt) methods to fit exponential models, Bayesian belief propagation,
particle filtering, graph-theoretic techniques.
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