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“Similarity” of shapes in humans 
and in computer vision

• Human beings have no trouble answering 
the question – do 2 objects have similar 
shapes?

• They use this to recognize the same object 
reappearing or to categorize objects into 
types (cars, tools, dogs, faces).

• Object recognition programs require 
measures of shape similarity to recognize, 
e.g. alpha-numeric characters, parts on an 
assembly line, faces at an airport.

• People create spontaneously an hierarchical 
classification of objects into broad 
categories, subcategories, continuing down 
to unique objects.



Some shapes and their categories

Typical shapes and examples of desired clustering 
in computer vision experiments. Top right: samples 
from the NIST handwritten zip code database often 
used in statistical learning theory; the ‘hat’ is Saint-
Exupery’s pattern recognition challenge.



The task of the mathematician

• The natural idea is to define a metric space of 
“shapes”, the distance being inversely 
proportional to psychophysical similarity.

• What point set? 2D retinal projections of 
objects or the full 3D object (or even 4D 
space-time traces of moving objects?

• We will call a shape any open subset S⊂ n

with not too convoluted a boundary ∂S, 
usually restricting to those S which are 
homeomorphic to a ball (sometimes as is, 
sometimes modulo Euclidean transformations, 
sometimes modulo translations and scalings). 
Usually we take n = 2 or 3.

• Call the set of these S. As in Banach space 
theory, we will have a family of such S for 
varying degrees of regularity of ∂S.



An aside on human skills

• People are amazingly bad at remembering 
new 3D shapes!

• When faced with having to recognize ‘paper-
clips’-- p/w-linear 3D curves -- from multiple 
views, people memorize the multiple 2D views 
(Poggio, Bulthoff et al).

• People have a rich vocabulary and excellent 
memories for new 2D shapes, much more 
limited ones for 3D shapes. Perhaps our 
world is populated with rather special types of 
3D shapes.



Shape recognition by man and 
machine is highly adaptive

• Thwarting the hope that one elegant metric 
models object recognition in general, we find 
that both (a) humans and (b) unsupervised 
object recognition programs tune themselves 
to differing aspects and features of shapes 
depending on the task.

• In 1988, Richard Herrnstein, Steve Kosslyn
and I did a naïve experiment to see if humans 
and pigeons used a similar metric and whether 
we could model it mathematically. Pigeons 
were trained successively to peck for one 
shape and not any others: # errors define their 
internal metric. For humans, the inverse of 
reaction time defines a psychophysical metric.



15 polygons

a) When pigeons 
were trained to 
discriminate these, 
their relative learning 
speeds could be 
modeled by a simple 
2D plot seen here.

b) People’s reaction 
times in the same task 
cannot be modeled so 
easily— because for 
each task, different 
features were 
attended to.

The 
experimental 
stimuli: 15 
polygons 
with varying 
‘features’:



A first look at metrics on shapes S⊂B

L1-metrics:
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Why more than one metric is needed

The central shape is similar in various 
respects to all 5 of the shapes around in – but 
in different metrics!

In L1, distances are: A < B,C < D,E

In L∞, distances are: B < C,D <A,E

In L∞ with 1-jets: D < B,C < A,E

In L1 with 2-jets: D < A,B < C,E

To make E close, need ‘robust’ non-convex 
metrics that discard outliers.

To make D far, qualitative ideas of ‘parts’ 
are needed – as it doesn’t break into 2 parts.



D’Arcy Thompson’s idea: related 
shapes can be deformed to each 

other
3 primate skulls, 
with ‘landmark’ 
points marked 
on each.

Diffeomorphisms 
of the human 
skull onto the 
two others given 
by biharmonic 
interpolation. 
(from F. Bookstein)

Mathematically, this suggests: define the 
metric as the length of the shortest path, in 
some Riemannian metric.



Geodesics between shapes and images 
(Miller et al)

A geodesic between a normal and a diseased heart in 3D:         
top -- a 2D slice; bottom -- the vector field in the plane

Make the set of shapes or images into a 
Riemannian manifold and solve for geodesics

Top: a geodesic between a normal brain and one with a 
tumor; bottom: a geodesic between a concealed rotated tank 
and a normalized tank.



NEXT

After this introduction and motivation, 
let’s study the space of shapes as 
mathematicians and ask what tools we 
have for constructing and analyzing 
Riemannian metrics on these spaces.



1st Riemannian metric: 
immersed curves (work w. P.Michor)
The nicest infinite dimensional spaces are 
Hilbert manifolds – but for the space of 
simple closed curves, things are not so nice!

Local charts: if C0 has an arc length 
parametrization φ(s), let

where sup|a| < C. BUT φ∈Ck⇒ψa∈Ck-1 !

Let U ={f |1 < |f′ | < 2}⊂Ck([0,1]), then

has no Frechet derivative!

We must expect to start with a smaller space, 
e.g. the set of C∞ curves S∞, with tangent 
space C∞ a’s, and complete this to something 
weaker in a Riemannian metric.

( )locus ( ) ( ) ( ) ( )a aC s s a s sψ φ φ⊥= = +

( 1) ,f f − →U U



The topology of the space of 
shapes S

In dimension 2, there is a wonderful 
deformation retraction of S.

Take the normal vector field a(s) to be 
curvature κ(s) and set up the geometric 
heat equation using the above local chart:

( ) ( ). ( )
t t

t
C C

C s s n s
t

κ∂ =
∂

Theorem of Gage-
Hamilton-Grayson: This 
defines a flow on S, 
carrying every C in finite 
time to an infinitesimal 
circle. Adding a pressure 
and drift term, every C
approaches 
asymptotically the unit 
circle, hence S is 
contractible.



An abortive attempt

Using the charts {ψa}, define the metric by
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Good metric d(I):
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“Shark-skin” effect:

Teeth decrease normal 
velocity a by ε, increase 
arc length by ε−1



Relation to currents
Lemma:           is Lipschitz on S∞, cnst 1/(2√A)| |C

Use ( ) ( )t
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The metric extends to all immersions, C∞

closed curves, not nec. simple, Simm and we 
get a continuous map of the completion:

( )imm closed integral currents, flat metricS∞ →

(or, equivalently, the space of integer-valued 
measurable fcns f s.t. ∂f is 1-rectifiable, 
endowed with the L1-metric.)



Geodesics, curvature of this metric
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If A is small 
compared to W′, κ″, 
sectional curvature is 
greater than or equal 
to 0! Caricature of space S

In the plane with orthonormal basis a1, a2, the 
sectional curvature is:

W=a1a2′ -a1′ a2 (Wronskian)

( ){ }2
3 2 2

22
4 2ta a A a aa a

t
κ κκ κ κ∂ ′′ ′ ′ ′= + − + +

∂



The origin of positive curvature

Distances shrink in the chart {ψa}:
(I) (I)

0( , ) ( , ),  if  is smalla b a bd C C d C C Aε ε+ ≤

Just like shark-skin 
collapse, normal 
displacement from 
Ca is less than from 
C0 by a factor cos(θ) 
and:
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A geodesic: note the ‘streamlining’ in the middle



2nd Riemannian metric: 
diffeomorphisms of Rn

Work in any dimension n now,

Write the space of shapes S as a 
homogeneous space w.r.t. G = Diff(Rn):

S≅ G/(subgp H fixing unit sphere)

Put right invariant metric on G, i.e.

dist( , )  dist( , ),  or
dist(( ) , ) , 

= some norm in lie algebra

e
I v v

v

ψ φ φ ψ
ε φ φ

=
+ =

H acts on right by isometries, so G→ S
is a Riemannian submersion, geodesics 
on S are geodesics on G starting, and 
hence continuing, ⊥ to cosets φH



Arnold’s result
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Introduce a Riemannian metric in 
SG =  group of volume preserving diffeos.

For any path {θt}, let

Then he proved geodesics are solutions of 
Euler’s equation of incompressible inviscid
fluid flow:

( . )t
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v v v p
t

∂ + ∇ = ∇
∂



Metrics on the full group
(Christensen, Rabbitt & Miller)

On the full G, need a stronger metric:
2
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vt = velocity, ut = Lvt = ‘momentum’ in this metric.
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Geodesics now are solutions to a regularized
compressible form of Euler’s equation (Vishik): 

Treating u as a section of Ω1⊗ Ω n (so <u,v> 
makes intrinsic sense), the equation says u
is constant along the flow given by v.

The equation is linear in u, so u can be a 
generalized function!



Inducing a metric on the quotient S
Now n=2. Define a quotient metric on S by:

{ }2inf  vector field on , ( . )| CL L
a v v a v n= =

This metric is non-degenerate even for L=1- ∆ 
because of:
Lemma: For L=1- ∆, is Lipschitz,  and area( )S

( , ) ( , )pr S T Ld C d S T≤I I
Cor.: The map S IS extends to a continuous 
map of the completion of S into the space of 
finite measures M(R2).

The infinitesimal metric, on the cotangent 
space to S (= 1-forms ω along C, 0 on tC) is 
given by the Green’s function KL of L:
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On the tangent space, it is a pseudo-differential 
operator.



Geodesics in the quotient S

For all curves C, define the singular 1-
current ωC :

, ( )C C C
C

v v n dsω = ⋅∫
Then assume the momentum has the 
form                   for some functions 
bt on Ct. This gives geodesics on S:
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projecting 
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(F.Beg)



Diffusion defines a probability 
measure on S (Dupuis-Grenander-Miller, Yip)

Diffusion on G is a random path {φt} solving 
the SDE:

( ( ), ),   ( , ) Gaussian, covt
t Lv x t v x t K

t
φ φ∂ = =
∂

Acting on the unit circle with a random 
stopping time, we get a measure. Here’s a 
sample path:

Alternately, we can combine this diffusion 
with curvature flow and seek the invariant 
distribution (as in Ornstein-Uhlenbeck
motion).



The quotient space of 
‘landmark points’
(Kendall, Younes)

G = Diff(Rn) also acts transitively on the space 
of distinct m-tuples, L ⊂(Rn)m, giving a 
quotient metric:
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where G=KL( Pi-Pj )−1. Its geodesics come 
from those on G whose momentum has finite 
support             . The geodesic equation is an 
ODE in which particles traveling in the same 
(resp. opposite) direction attract (resp. repel):

ii Pu δ∑



Examples of warping to match 
landmark points (Miller, Younes)

Point A is mapped to B, and C to D. On the 
left, the biharmonic interpolation, which fails 
to be a diffeomorphism. On the right, the 
diffeomorphism closest to the identity. On the 
2nd row, the determinant (black=negative). 
Below, another example:



3rd Riemannian metric: the 
Teichmüller approach

Identify R2 with C!
Use the Riemann Mapping theorem:

∀ simple closed curves Γ,
∃ conformal map
unique up to

If we embed  , then
∃! conformal map

hence canonical curves 

Thus 

0  Int( )φ∆ → Γ
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∀φ, construct abstract Riemann surface by gluing 
2 copies of ∆ via φ
The result is conformally equivalent to

φ∞.

ˆ ,  with ( , ) ( , )t t+ +∞ ↔ ∞

1
2

def
transl+scalings) 

     Diff ( ) ( )

(
S PSL≅

=S S/

/

It has a complex structure and a Riemannian
(in fact Kähler) metric both invariant under 
the left action of Diff(S1).

The inverse of this construction is 
via “sewing”



The complex structure

Put in a complex vector space via the 
coefficients of '' 'φ φ∞ ∞

S

Identifying the tangent space to     at Γ with 
normal vector fields a(s)nΓ (mod constant/radial 
fields), the almost cx structure J is given by the 
Hilbert transform:

a) let θ be the angular coordinate given by φ∞ ,
b) let H = ctn(θ/2)/2π
then if f(θ )=Σan einθ, 

H ∗ f(θ )=Σ i sgn(n)an einθ ,

S

( ) ( )J a n a nΓ Γ⋅ = ∗ ⋅H

Equivalently, the normal vector field (mod …) 
also extends uniquely to a holomorphic vector 
field Xe on ext(Γ), triple zero at ∞, tangential 
component J(anΓ)⊥ .



The Weil-Peterssen metric
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This is invariant under ad(SL2(R)), 
hence extends to     and defines a 
homogeneous Riemannian metric! 

It is given at Γ by expanding Xe in terms 
of angular coordinate θ from int(Γ):

S

I believe all the sectional curvatures of the 
W-P metric are non-negative: but this does 
not seem to be in print.
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Start with the norm on the lie algebra of 
Diff(S1):

The integrated distance dWP is positive. In 
fact, there is a continuous map

quasi-circles (1)
WP-completion( )  

Teichmuller metric
   

T 
⊂  
 

S



NEXT
So we have 3 metrics. Lots of things are 
still unknown:

– how about the curvature of the middle 
metric? 

– can we understand the distortion the W-
P metric uses relative to the more 
elementary ones to homogenize this 
space? 

– can we relate the metrics, compare 
geodesics and find the internal structure 
of the space?

We go back to human shape perception 
for some clues.



People see shapes as having parts

There is a universal human tendency to think 
of shapes as breaking up into parts, imposing 
a kind of shape grammar:

Is there some mathematics here?

Marr’s ‘3D 
model’, in 
“Vision”, 
(1980)



The medial axis of a 2D shape

In dimension 2, the biologist Blum and the 
topologist Thurston invented the same 
construction to derive a combinatorial 
description of a shape S: equivalently, take 
the set of bitangent circles inside S or 
compactify R2 to S2 and take the convex 
hull of S in D3. The locus of centers of these 
circles is called the medial axis:

(Examples by S.-C.Zhu)



The medial axis seems to be 
computed in our brains

Psychophysical tests 
show extra sensitivity 
at the axis of a shape: 
the shape here is the 
cardioid, the arc inside 
its axis, the plots show 
contrast-sensitivity 
along the 2 dotted 
cross sections.
(I.Kovacs)

Left: the stimulus. Right: 3 plots of neural 
responses at varying time lags -- note response 
on the far right at the axis. (Tai-Sing Lee)



A cell decomposition of S: 
work in progress

In an open dense subset U of S, the medial axis 
has a finite number of non-degenerate 
singularities, either centers of tri-tangent circles 
or centers of circles osculating to order 4 at a 
local curvature maximum.

A 1st approximation defines the cells to be the 
connected components of U, one for each type 
of tree. Better decompositions arise from a) 
pruning the axis when the angle between the 
bitangencies is small and b) adding further 
combinatorial structure from local minima of 
the disk radius – necks – or the external medial 
axis – concavities (Kimia).



The medial axis can be used to derive 
better probability measures on S

Samples from a probability model on polygons, 
of exponential type, trained to reproduce 
marginal distributions on 6 statistics related to 
curvature and the medial axis (Song Chun Zhu)



Dimension 3 is much harder
In dimension 3, S is still contractible
(Hatcher) but no simple retraction is known.
Mean curvature heat flow and other variants
produce singularities. And in high enough
dimension, S is not contractible!

In dimension 3, we typically break up objects
into ‘generalized cylinders’, cylinders with
irregular cross-sections, which may twist and
bend (Binford). What is the best mathematical
construction of such parts? What is the right
grammar for 3D shapes?

Without arc-length parametrization, it is much
harder to deal with surfaces, e.g. get local
charts on S , construct random shapes via
SDE’s or polyhedral models, etc.



Would you have guessed this 
in dimension 3?

In dimension 2, 
curvature max 
and min are 
perceptually 
obvious. In 
dimension 3, they 
generalize to the 
ridge curves, but 
the joker which 
makes surface 
geometry 
complex are the
umbilics, which 
seem to be 
perceptually 
invisible!


